BETON DAYANIM ÖZELLİKLERİNİN YÜZEY TEPKİ YÖNTEMİ, GENETİK ALGORİTMA VE YAPAY SİNİR AĞLARI İLE TAHMİNİ
Yıl 2022,
Cilt: 10 Sayı: 2, 429 - 441, 30.06.2022
Ebru Başpınar Tuncay
,
Ekin Köken
,
Şemsettin Kılınçarslan
Öz
Bu çalışmada, beton dayanım özellikleri yüzey tepki yöntemi, genetik algoritma ve yapay sinir ağları yöntemleri ile analiz edilmiştir. Altı farklı beton agregası kullanılarak küp (10x10x10 cm) ve prizmatik (15x15x60 cm) beton numuneleri hazırlanmış olup, beton tek eksenli basınç dayanımı (UCSc) ve eğilme dayanımının (FSc) tahminlenmesi için bazı tahmin modeller geliştirilmiştir. Geliştirilen modellerde beton yoğunluğu (ρc), beton agregalarının Los Angeles aşınma kaybı (LAA) ve betonlara ait P dalgası hızı (Vpc) gibi parametreler kullanılmıştır. Elde edilen modellerin performansları bazı istatistiksel göstergeler ışığında değerlendirilmiş ve genetik algoritma ve yapay sinir ağlarını temel alan yöntemlerin beton dayanım özelliklerini tahmininde başarılı bir şekilde kullanılabileceği belirlenmiştir.
Destekleyen Kurum
Süleyman Demirel Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi
Teşekkür
Bu çalışma Süleyman Demirel Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından 1806-D-09 No’lu proje kapsamında desteklenmiştir. Araştırmacılar Prof. Dr. Fuzuli YAĞMURLU’ya ve Öğretim Görevlisi Olcay ÇAKMAK’a katkılarından dolayı içtenlikle teşekkür eder.
Kaynakça
- American Concrete Institute (ACI) Committee 211, 1993. Guide for Selecting Proportions for High Strength Concrete with Portland Cement and Fly Ash. ACI211.4R-93, Detroit, MI.
- Armaghani, D.J., Asteris, P.G., 2021. A Comparative Study of ANN and ANFIS Models for the Prediction of Cement-Based Mortar Materials Compressive Strength. Neural Computing and Applications, 33(9), 4501-4532.
- ASTM C597, 1994. Standard Test Method for Pulse Velocity Through Concrete. Annual book of ASTM Standards, Vol. 04.02. West Conshohocken, PA: American Society for Testing and Materials.
- Asutkar, P., Shinde, S.B., Patel, R., 2017. Study on the Behaviour of Rubber Aggregates Concrete Beams Using Analytical Approach. Engineering Science and Technology, an International Journal, 20(1), 151-159.
- Cihan, M.T., Güner, A., Yüzer, N., 2013. Response Surfaces for Compressive Strength of Concrete. Construction and Building Materials, 40, 763-774.
- Deng, F., He, Y., Zhou, S., Yu, Y., Cheng, H., Wu, X., 2018. Compressive Strength Prediction of Recycled Concrete Based on Deep Learning. Construction and Building Materials, 175, 562-569.
- Duan, Z.H., Kou, S.C., Poon, C.S., 2013. Prediction of Compressive Strength of Recycled Aggregate Concrete Using Artificial Neural Networks. Construction and Building Materials, 40, 1200-1206.
- Feng, D.C., Liu, Z.T., Wang, X.D., Chen, Y., Chang, J.Q., Wei, D.F., Jiang, Z.M., 2020. Machine learning-Based Compressive Strength Prediction for Concrete: An Adaptive Boosting Approach. Construction and Building Materials, 230, 117000.
- Ferreira, C., 2001. Gene Expression Programming: A New Adaptive Algorithm for Solving Problems. Complex Systems, 13(2), 87-129.
- Gallo, C., 2015. Artificial Neural Networks Tutorial. In Encyclopedia of Information Science and Technology, Third Edition (pp. 6369-6378). IGI Global.
- Getahun, M.A., Shitote, S.M., Gariy, Z.C.A., 2018. Artificial Neural Network Based Modelling Approach for Strength Prediction of Concrete Incorporating Agricultural and Construction Wastes. Construction and Building Materials, 190, 517-525.
- Hammoudi, A., Moussaceb, K., Belebchouche, C., Dahmoune, F., 2019. Comparison of Artificial Neural Network (ANN) and Response Surface Methodology (RSM) Prediction in Compressive Strength of Recycled Concrete Aggregates. Construction and Building Materials, 209, 425-436.
- Kewalramani, M.A., Gupta, R., 2006. Concrete Compressive Strength Prediction Using Ultrasonic Pulse Velocity Through Artificial Neural Networks. Automation in Construction, 15(3), 374-379.
- Koza J., 1992. Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT press, USA.
- Lawal, A.I., Idris, M.A., 2020. An Artificial Neural Network-Based Mathematical Model for the Prediction of Blast-Induced Ground Vibrations. International Journal of Environmental Studies, 77(2), 318-334.
- Myers R.H., 2016. Response Surface Methodology: Process and Product Optimization Using Designed Experiments, 4th ed. (Raymond H. Myers, Douglas C. Montgomery, Christine M. Anderson-Cook. Eds.), Wiley, ISBN 978-1-118-91601-8.
- Moutassem, F., Chidiac, S.E., 2016. Assessment of Concrete Compressive Strength Prediction Models. KSCE Journal of Civil Engineering, 20(1), 343-358.
- Naderpour, H., Rafiean, A.H., Fakharian, P., 2018. Compressive Strength Prediction of Environmentally Friendly Concrete Using Artificial Neural Networks. Journal of Building Engineering, 16, 213-219.
- Namlı, E., Erdal, H.İ., Erdal, H., 2016. Dalgacık Dönüşümü ile Beton Basınç Dayanım Tahmininin Iyileştirilmesi. Politeknik Dergisi, 19(4), 471-480.
- Ni, H.G., Wang, J.Z., 2000. Prediction of Compressive Strength of Concrete by Neural Networks. Cement and Concrete Research, 30(8), 1245-1250.
- Nilson, A.H., Darwin, D., Dolan, C.W., 2010. Design of Concrete Structures. 14th ed. New York, NY, USA: McGraw-Hill Education.
- Oluokun F.A., Burdette E.G., Harold Deatherage J., 1990. Early-Age Concrete Strength Prediction by Maturity--Another Look. Materials Journal, 87(6), 565-572.
- Onifade, M., Lawal, A.I., Aladejare, A.E., Bada, S., Idris, M.A., 2019. Prediction of Gross Calorific Value of Solid Fuels from Their Proximate Analysis Using Soft Computing and Regression Analysis. International Journal of Coal Preparation and Utilization, 1-15.
- Özçep, F., Karabulut, S., Özgüven, B., Sanlı, O., 2012. Tahribatsız Test Yöntemleri ve Ultrasonik Hız Ölçümleri. Jeofizik Bülteni, 22, 69-70.
- Öztaş, A., Pala, M., Özbay, E., Kanca, E., Cağlar, N., Bhatti, M.A., 2006. Predicting the Compressive Strength and Slump of High Strength Concrete Using Neural Network. Construction and Building Materials, 20(9), 769-775.
- Özturan, M., Kutlu, B., Özturan, T., 2008. Comparison of Concrete Strength Prediction Techniques with Artificial Neural Network Approach. Building Research Journal, 56(1), 23-36.
- Panzera, T.H., Christoforo, A.L., Cota, F.P., Borges, P.R., Bowen, C.R., 2011. Ultrasonic Pulse Velocity Evaluation of Cementitious Materials. Advances in Composite Materials-Analysis of Natural and Man-Made Materials, 411-436.
- Poorarbabi, A., Ghasemi, M., Moghaddam, M.A., 2020. Concrete Compressive Strength Prediction Using Non-Destructive Tests Through Response Surface Methodology. Ain Shams Engineering Journal, 11(4), 939-949.
- Popovics, S., 1998. History of a Mathematical Model for Strength Development of Portland Cement Concrete. ACI Materials Journal, Vol. 95, No. 5, pp. 593–600.
- Raja, M.N.A., Shukla, S.K., 2021. Predicting the Settlement of Geosynthetic-Reinforced Soil Foundations Using Evolutionary Artificial Intelligence Technique. Geotextiles and Geomembranes, Volume 49, Issue 5, 1280-1293.
- Shishegaran, A., Varaee, H., Rabczuk, T., Shishegaran, G., 2021. High Correlated Variables Creator Machine: Prediction of the Compressive Strength of Concrete. Computers & Structures, 247, 106479.
- Siraj, N., 2015. Prediction of Compressive Strength of Concrete Using Artificial Neural Network, Fuzzy System Model and Thermodynamic Methods. Addis Ababa University Institute of Technology, Master Thesis, 99p.
- Snell, L.M., Van Roekel, J., Wallace, N.D., 1989. Predicting Early Concrete Strength. Concrete International, 11(12), 43-47.
- Sun, Y., Li, G., Zhang, J., Qian, D., 2019. Prediction of the Strength of Rubberized Concrete by an Evolved Random Forest Model. Advances in Civil Engineering, Volume 2019, Article ID 5198583, 7 pages.
- Tayfur, G., Erdem, T.K., Kırca, Ö., 2014. Strength Prediction of High-Strength Concrete by Fuzzy Logic and Artificial Neural Networks. Journal of Materials in Civil Engineering, 26(11), 04014079.
- TS EN 933-2, 1996. Agregaların Geometrik Özellikleri için Deneyler Kısım 2: Tane Boyutu Dağılım Tayini-Deney Elekleri, Elek Göz Açıklıklarını Anma Büyüklükleri. Türk Standardları Enstitüsü. Ankara.
- TS EN 197-1, 2011. Çimento- Bölüm 1: Genel Çimentolar- Bileşim, Özellikler ve Uygunluk Kriterleri. Türk Standardları Enstitüsü. Ankara.
- TS 3530 EN 933-1, 1999. Agregaların Geometrik Özellikleri için Deneyler Bölüm 1: Tane Büyüklüğü Dağılımı Tayini-Eleme Metodu. Türk Standardları Enstitüsü. Ankara.
- TS EN 206-1, 2014. Beton- Bölüm 1: Özellik, Performans, İmalat ve Uygunluk. Türk Standardları Enstitüsü. Ankara.
- TS EN 12390-2, 2010. Beton -Sertleşmiş Beton Deneyleri - Bölüm 2: Dayanım Deneylerinde Kullanılacak Deney Numunelerinin Hazırlanması ve Kürlenmesi. Türk Standartları Enstitüsü, Ankara.
- TS EN 12390-7, 2010. Beton-Sertleşmiş Beton Deneyleri - Bölüm 7: Sertleşmiş Betonun Yoğunluğunun Tayini. Türk Standartları Enstitüsü, Ankara.
- TS EN 12390-3, 2010. Beton-Sertleşmiş Beton Deneyleri-Bölüm 3: Deney Numunelerinde Basınç Dayanımının Tayini. Türk Standartları Enstitüsü, Ankara.
- TS EN 12390-5, 2010. Beton-Sertleşmiş Beton Deneyleri - Bölüm 5: Deney Numunelerinin Eğilme Dayanımının Tayini. Türk Standartları Enstitüsü, Ankara.
- TS EN 1097-6, 2013. Agregaların Mekanik ve Fiziksel Özellikleri için Deneyler - Bölüm 6: Tane Yoğunluğu ve Su Emme Oranının Tayini. Türk Standartları Enstitüsü, Ankara.
- TS EN 1097-2, 2010. Agregaların Mekanik ve Fiziksel Özellikleri için Deneyler Bölüm 2: Parçalanma Direncinin Tayini için Metotlar. Türk Standartları Enstitüsü, Ankara.
- TS 802, 2009. Beton Karışım Tasarımı Hesap Esasları. Türk Standardları Enstitüsü. Ankara.
- Tuncay Başpınar, E., 2015. Isparta Yöresinde Yeralan Kaya Birimlerinden Elde Edilen Agregaların Beton Performansına Etkisi. Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü, Yayınlanmamış Doktora Tezi, 228s, Isparta, Türkiye.
- Zhang, X., Nguyen, H., Bui, X.N., Le, H.A., Nguyen-Thoi, T., Moayedi, H., Mahesh, V., 2020. Evaluating and Predicting the Stability of Roadways in Tunnelling and Underground Space Using Artificial Neural Network-Based Particle Swarm Optimization. Tunnelling and Underground Space Technology, 103, 103517.
- Zhong, J., Feng, L., Ong, Y.S., 2017. Gene expression Programming: A Survey. IEEE Computational Intelligence Magazine, 12(3), 54-72.
ESTIMATION OF CONCRETE STRENGTH PROPERTIES THROUGH THE RESPONSE SURFACE METHODOLOGY, GENETIC ALGORITHM, AND ARTIFICIAL NEURAL NETWORKS
Yıl 2022,
Cilt: 10 Sayı: 2, 429 - 441, 30.06.2022
Ebru Başpınar Tuncay
,
Ekin Köken
,
Şemsettin Kılınçarslan
Öz
In this study, concrete strength properties were estimated by surface response method, genetic algorithm, and artificial neural network methods. Cubic (10x10x10 cm) and prismatic (15x15x60 cm) concrete samples were prepared using six different concrete aggregates, and some models were developed to estimate the uniaxial compressive strength (UCSc) and flexural strength (FSc) of concrete. In the developed models, parameters such as concrete density (ρc), Los Angeles abrasion loss of concrete aggregates (LAA), and P wave velocity (Vpc) of concretes were used. The performances of the models obtained were evaluated in the light of some statistical indicators, and it was determined that methods based on genetic algorithms and artificial neural networks could be successfully used to estimate the concrete strength properties.
Kaynakça
- American Concrete Institute (ACI) Committee 211, 1993. Guide for Selecting Proportions for High Strength Concrete with Portland Cement and Fly Ash. ACI211.4R-93, Detroit, MI.
- Armaghani, D.J., Asteris, P.G., 2021. A Comparative Study of ANN and ANFIS Models for the Prediction of Cement-Based Mortar Materials Compressive Strength. Neural Computing and Applications, 33(9), 4501-4532.
- ASTM C597, 1994. Standard Test Method for Pulse Velocity Through Concrete. Annual book of ASTM Standards, Vol. 04.02. West Conshohocken, PA: American Society for Testing and Materials.
- Asutkar, P., Shinde, S.B., Patel, R., 2017. Study on the Behaviour of Rubber Aggregates Concrete Beams Using Analytical Approach. Engineering Science and Technology, an International Journal, 20(1), 151-159.
- Cihan, M.T., Güner, A., Yüzer, N., 2013. Response Surfaces for Compressive Strength of Concrete. Construction and Building Materials, 40, 763-774.
- Deng, F., He, Y., Zhou, S., Yu, Y., Cheng, H., Wu, X., 2018. Compressive Strength Prediction of Recycled Concrete Based on Deep Learning. Construction and Building Materials, 175, 562-569.
- Duan, Z.H., Kou, S.C., Poon, C.S., 2013. Prediction of Compressive Strength of Recycled Aggregate Concrete Using Artificial Neural Networks. Construction and Building Materials, 40, 1200-1206.
- Feng, D.C., Liu, Z.T., Wang, X.D., Chen, Y., Chang, J.Q., Wei, D.F., Jiang, Z.M., 2020. Machine learning-Based Compressive Strength Prediction for Concrete: An Adaptive Boosting Approach. Construction and Building Materials, 230, 117000.
- Ferreira, C., 2001. Gene Expression Programming: A New Adaptive Algorithm for Solving Problems. Complex Systems, 13(2), 87-129.
- Gallo, C., 2015. Artificial Neural Networks Tutorial. In Encyclopedia of Information Science and Technology, Third Edition (pp. 6369-6378). IGI Global.
- Getahun, M.A., Shitote, S.M., Gariy, Z.C.A., 2018. Artificial Neural Network Based Modelling Approach for Strength Prediction of Concrete Incorporating Agricultural and Construction Wastes. Construction and Building Materials, 190, 517-525.
- Hammoudi, A., Moussaceb, K., Belebchouche, C., Dahmoune, F., 2019. Comparison of Artificial Neural Network (ANN) and Response Surface Methodology (RSM) Prediction in Compressive Strength of Recycled Concrete Aggregates. Construction and Building Materials, 209, 425-436.
- Kewalramani, M.A., Gupta, R., 2006. Concrete Compressive Strength Prediction Using Ultrasonic Pulse Velocity Through Artificial Neural Networks. Automation in Construction, 15(3), 374-379.
- Koza J., 1992. Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT press, USA.
- Lawal, A.I., Idris, M.A., 2020. An Artificial Neural Network-Based Mathematical Model for the Prediction of Blast-Induced Ground Vibrations. International Journal of Environmental Studies, 77(2), 318-334.
- Myers R.H., 2016. Response Surface Methodology: Process and Product Optimization Using Designed Experiments, 4th ed. (Raymond H. Myers, Douglas C. Montgomery, Christine M. Anderson-Cook. Eds.), Wiley, ISBN 978-1-118-91601-8.
- Moutassem, F., Chidiac, S.E., 2016. Assessment of Concrete Compressive Strength Prediction Models. KSCE Journal of Civil Engineering, 20(1), 343-358.
- Naderpour, H., Rafiean, A.H., Fakharian, P., 2018. Compressive Strength Prediction of Environmentally Friendly Concrete Using Artificial Neural Networks. Journal of Building Engineering, 16, 213-219.
- Namlı, E., Erdal, H.İ., Erdal, H., 2016. Dalgacık Dönüşümü ile Beton Basınç Dayanım Tahmininin Iyileştirilmesi. Politeknik Dergisi, 19(4), 471-480.
- Ni, H.G., Wang, J.Z., 2000. Prediction of Compressive Strength of Concrete by Neural Networks. Cement and Concrete Research, 30(8), 1245-1250.
- Nilson, A.H., Darwin, D., Dolan, C.W., 2010. Design of Concrete Structures. 14th ed. New York, NY, USA: McGraw-Hill Education.
- Oluokun F.A., Burdette E.G., Harold Deatherage J., 1990. Early-Age Concrete Strength Prediction by Maturity--Another Look. Materials Journal, 87(6), 565-572.
- Onifade, M., Lawal, A.I., Aladejare, A.E., Bada, S., Idris, M.A., 2019. Prediction of Gross Calorific Value of Solid Fuels from Their Proximate Analysis Using Soft Computing and Regression Analysis. International Journal of Coal Preparation and Utilization, 1-15.
- Özçep, F., Karabulut, S., Özgüven, B., Sanlı, O., 2012. Tahribatsız Test Yöntemleri ve Ultrasonik Hız Ölçümleri. Jeofizik Bülteni, 22, 69-70.
- Öztaş, A., Pala, M., Özbay, E., Kanca, E., Cağlar, N., Bhatti, M.A., 2006. Predicting the Compressive Strength and Slump of High Strength Concrete Using Neural Network. Construction and Building Materials, 20(9), 769-775.
- Özturan, M., Kutlu, B., Özturan, T., 2008. Comparison of Concrete Strength Prediction Techniques with Artificial Neural Network Approach. Building Research Journal, 56(1), 23-36.
- Panzera, T.H., Christoforo, A.L., Cota, F.P., Borges, P.R., Bowen, C.R., 2011. Ultrasonic Pulse Velocity Evaluation of Cementitious Materials. Advances in Composite Materials-Analysis of Natural and Man-Made Materials, 411-436.
- Poorarbabi, A., Ghasemi, M., Moghaddam, M.A., 2020. Concrete Compressive Strength Prediction Using Non-Destructive Tests Through Response Surface Methodology. Ain Shams Engineering Journal, 11(4), 939-949.
- Popovics, S., 1998. History of a Mathematical Model for Strength Development of Portland Cement Concrete. ACI Materials Journal, Vol. 95, No. 5, pp. 593–600.
- Raja, M.N.A., Shukla, S.K., 2021. Predicting the Settlement of Geosynthetic-Reinforced Soil Foundations Using Evolutionary Artificial Intelligence Technique. Geotextiles and Geomembranes, Volume 49, Issue 5, 1280-1293.
- Shishegaran, A., Varaee, H., Rabczuk, T., Shishegaran, G., 2021. High Correlated Variables Creator Machine: Prediction of the Compressive Strength of Concrete. Computers & Structures, 247, 106479.
- Siraj, N., 2015. Prediction of Compressive Strength of Concrete Using Artificial Neural Network, Fuzzy System Model and Thermodynamic Methods. Addis Ababa University Institute of Technology, Master Thesis, 99p.
- Snell, L.M., Van Roekel, J., Wallace, N.D., 1989. Predicting Early Concrete Strength. Concrete International, 11(12), 43-47.
- Sun, Y., Li, G., Zhang, J., Qian, D., 2019. Prediction of the Strength of Rubberized Concrete by an Evolved Random Forest Model. Advances in Civil Engineering, Volume 2019, Article ID 5198583, 7 pages.
- Tayfur, G., Erdem, T.K., Kırca, Ö., 2014. Strength Prediction of High-Strength Concrete by Fuzzy Logic and Artificial Neural Networks. Journal of Materials in Civil Engineering, 26(11), 04014079.
- TS EN 933-2, 1996. Agregaların Geometrik Özellikleri için Deneyler Kısım 2: Tane Boyutu Dağılım Tayini-Deney Elekleri, Elek Göz Açıklıklarını Anma Büyüklükleri. Türk Standardları Enstitüsü. Ankara.
- TS EN 197-1, 2011. Çimento- Bölüm 1: Genel Çimentolar- Bileşim, Özellikler ve Uygunluk Kriterleri. Türk Standardları Enstitüsü. Ankara.
- TS 3530 EN 933-1, 1999. Agregaların Geometrik Özellikleri için Deneyler Bölüm 1: Tane Büyüklüğü Dağılımı Tayini-Eleme Metodu. Türk Standardları Enstitüsü. Ankara.
- TS EN 206-1, 2014. Beton- Bölüm 1: Özellik, Performans, İmalat ve Uygunluk. Türk Standardları Enstitüsü. Ankara.
- TS EN 12390-2, 2010. Beton -Sertleşmiş Beton Deneyleri - Bölüm 2: Dayanım Deneylerinde Kullanılacak Deney Numunelerinin Hazırlanması ve Kürlenmesi. Türk Standartları Enstitüsü, Ankara.
- TS EN 12390-7, 2010. Beton-Sertleşmiş Beton Deneyleri - Bölüm 7: Sertleşmiş Betonun Yoğunluğunun Tayini. Türk Standartları Enstitüsü, Ankara.
- TS EN 12390-3, 2010. Beton-Sertleşmiş Beton Deneyleri-Bölüm 3: Deney Numunelerinde Basınç Dayanımının Tayini. Türk Standartları Enstitüsü, Ankara.
- TS EN 12390-5, 2010. Beton-Sertleşmiş Beton Deneyleri - Bölüm 5: Deney Numunelerinin Eğilme Dayanımının Tayini. Türk Standartları Enstitüsü, Ankara.
- TS EN 1097-6, 2013. Agregaların Mekanik ve Fiziksel Özellikleri için Deneyler - Bölüm 6: Tane Yoğunluğu ve Su Emme Oranının Tayini. Türk Standartları Enstitüsü, Ankara.
- TS EN 1097-2, 2010. Agregaların Mekanik ve Fiziksel Özellikleri için Deneyler Bölüm 2: Parçalanma Direncinin Tayini için Metotlar. Türk Standartları Enstitüsü, Ankara.
- TS 802, 2009. Beton Karışım Tasarımı Hesap Esasları. Türk Standardları Enstitüsü. Ankara.
- Tuncay Başpınar, E., 2015. Isparta Yöresinde Yeralan Kaya Birimlerinden Elde Edilen Agregaların Beton Performansına Etkisi. Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü, Yayınlanmamış Doktora Tezi, 228s, Isparta, Türkiye.
- Zhang, X., Nguyen, H., Bui, X.N., Le, H.A., Nguyen-Thoi, T., Moayedi, H., Mahesh, V., 2020. Evaluating and Predicting the Stability of Roadways in Tunnelling and Underground Space Using Artificial Neural Network-Based Particle Swarm Optimization. Tunnelling and Underground Space Technology, 103, 103517.
- Zhong, J., Feng, L., Ong, Y.S., 2017. Gene expression Programming: A Survey. IEEE Computational Intelligence Magazine, 12(3), 54-72.