Araştırma Makalesi
BibTex RIS Kaynak Göster

ORGANİK RANKİNE ÇEVRİMİNDE ÇOKLU AMAÇ FONKSİYONLARINA BAĞLI OLARAK OPTİMUM AKIŞKANIN FARKLI ISI KAYNAĞI SICAKLIKLARI İÇİN BELİRLENMESİ

Yıl 2023, Cilt: 11 Sayı: 1, 310 - 323, 27.03.2023
https://doi.org/10.21923/jesd.1011171

Öz

Bu çalışmada, Organik Rankine Çevrimleri (ORÇ) düşük sıcaklık uygulamaları kapsamında baskılanamayan sıralamalı genetik algoritma-II (NSGA-II) kullanılarak optimum akışkan belirlenmiştir. Isı kaynağı sıcaklıkları 90, 100 ve 110 °C olarak alınmıştır. Akışkan optimizasyonu, 4 farklı kategoriden 8 akışkanın farklı kriterler altında performansları karşılaştırılarak yapılmıştır (kuru-R601 ve R601a, izentropik-R141b ve R123, ıslak-R152a ve R134a, yeni nesil-R1234yf ve R1234ze). Enerji, Ekserji, Ekonomi ve Çevre (4E) parametreleri altında amaç fonksiyonları oluşturulmuştur. ORÇ sistemlerinde her organik akışkanın belirli avantajları ve dezavantajları vardır. Organik akışkan seçimi ile ilgili çalışmaların sistem performans parametrelerinden tek bir amacını karşıladığı görülmektedir. Ancak ORÇ sistemlerinde ısıl verim açısından iyi performans gösteren akışkanın gerekli evaporatör kapasitesinden dolayı türbin güç performansının istenilen seviyede olmadığı gözlemlenmiştir. Bu nedenle farklı amaç fonksiyonları altında optimize edilerek kullanılabilecek organik akışkan yüzdesinin belirlenmesi gerekmektedir. Bu çalışmada farklı amaç fonksiyonlarının birlikte değerlendirilmesiyle 90, 100 ve 110 °C ısı kaynağı sıcaklıkları altında çalışan ORÇ'ler için optimum akışkan tespit edilmiştir.

Kaynakça

  • Agromayor, R., Lars O. N. 2017. “Fluid Selection and Thermodynamic Optimization of Organic Rankine Cycles for Waste Heat Recovery Applications.” Energy Procedia 129. Elsevier B.V.: 527–34.
  • Andreasen, J. G., U. Larsen, T. Knudsen, and F. Haglind. 2015. “Design and Optimization of a Novel Organic Rankine Cycle with Improved Boiling Process.” Energy 91. Elsevier Ltd: 48–59.
  • Andreasen, J. G., Larsen U., Knudsen T., Pierobon L., and Haglind F. 2014. “Selection and Optimization of Pure and Mixed Working Fluids for Low Grade Heat Utilization Using Organic Rankine Cycles.” Energy 73. Elsevier Ltd: 204–13.
  • Behzadi, A., Ehsan G., Ehsan H., and Ali H. 2018. “Multi-Objective Optimization and Exergoeconomic Analysis of Waste Heat Recovery from Tehran’s Waste-to-Energy Plant Integrated with an ORC Unit.” Energy 160. Elsevier B.V.: 1055–68.
  • Bian, S., Teng W., Jin F. Y. 2014. “Parametric Optimization of Organic Rankine Cycle by Genetic Algorithm.” Applied Mechanics and Materials 672–674: 741–45.
  • Boyaghchi, F. A., Mansoure C., Vajiheh S. 2015. “Optimization of a Novel Combined Cooling, Heating and Power Cycle Driven by Geothermal and Solar Energies Using the Water/CuO (Copper Oxide) Nanofluid.” Energy 91. Elsevier Ltd: 685–99.
  • Calm, James M., and Glenn C. Hourahan. 2007. “Refrigerant Data Update.” HPAC Heating, Piping, AirConditioning Engineering 79 (1): 50–64.
  • Donateo, T., Fazio A. 2014. “A Numerical Procedure for the Preliminary Design of a ORC Power Plants with Positive Displacement Expanders.” WSEAS Transactions on Environment and Development 10 (January 2014): 186–96.
  • Fiaschi, D., Adi L., Giampaolo M., Duccio T. 2014. “An Innovative ORC Power Plant Layout for Heat and Power Generation from Medium- to Low-Temperature Geothermal Resources.” Energy Conversion and Management 88. Elsevier Ltd: 883–93.
  • Gutiérrez A., César G., Faissal A., Hisham S. B., Medardo S. G., Mahmoud M. El-Halwagi, José M. Ponce-Ortega. 2015. “Industrial Waste Heat Recovery and Cogeneration Involving Organic Rankine Cycles.” Clean Technologies and Environmental Policy 17 (3): 767–79.
  • Han, Z., Yida Y., Yilin Y. 2013. “Selection of Working Fluids for Solar Thermal Power Generation with Organic Rankine Cycles System Based on Genetic Algorithm.” ICMREE 2013 - Proceedings: 2013 International Conference on Materials for Renewable Energy and Environment 1: 102–6.
  • Huster, W. R., Artur M. S., Alexander M. 2020. “Working Fluid Selection for Organic Rankine Cycles via Deterministic Global Optimization of Design and Operation.” Optimization and Engineering 21 (2). Springer US: 517–36.
  • Imran, M., Byung S. P., Hyouck J. K., Dong H. L., Muhammad U., Manki H. 2014. “Thermo-Economic ptimization of Regenerative Organic Rankine Cycle for Waste Heat Recovery Applications.” Energy Conversion and Management 87. Elsevier Ltd: 107–18.
  • Jankowski, M., Aleksandra B., Katarzyna S. D., Giuseppe I.. 2019. “Determination of an Optimal Pinch Point Temperature Difference Interval in ORC Power Plant Using Multi-Objective Approach.” Journal of Cleaner Production 217: 798–807.
  • Javan, S., Vahid M., Pouria A., Pedram H. 2016. “Fluid Selection Optimization of a Combined Cooling, Heating and Power (CCHP) System for Residential Applications.” Applied Thermal Engineering 96. Elsevier Ltd: 26–38.
  • Kai, Z., Zhang M., Wang Y., Sun Z., Liu S., and Ning J.. 2015. “Parametric Optimization of Low Temperature ORC System.” Energy Procedia 75. Elsevier B.V.: 1596–1602.
  • Khaljani, M., R. Khoshbakhti S., Bahlouli K. 2015. “Thermodynamic and Thermoeconomic Optimization of an Integrated Gas Turbine and Organic Rankine Cycle.” Energy 93. Elsevier Ltd: 2136–45.
  • Larsen, U., Oskar S., Fredrik H. 2014. “A Comparison of Advanced Heat Recovery Power Cycles in a Combined Cycle for Large Ships.” Energy 74 (C). Elsevier Ltd: 260–68.
  • Long, R., Y. J. Bao, X. M. Huang, and W. Liu. 2014. “Exergy Analysis and Working Fluid Selection of Organic Rankine Cycle for Low Grade Waste Heat Recovery.” Energy 73. Elsevier Ltd: 475–83.
  • Nazari, N., Parisa H., and Soheil P. 2016. “Multi-Objective Optimization of a Combined Steam-Organic Rankine Cycle Based on Exergy and Exergo-Economic Analysis for Waste Heat Recovery Application.” Energy Conversion and Management 127. Elsevier Ltd: 366–79.
  • Pierobon, L., Masoud R., Ulrik L., and Fredrik H. 2013. “Thermodynamic Analysis of an Integrated Gasification Solid Oxide Fuel Cell Plant Combined with an Organic Rankine Cycle.” Renewable Energy 60. Elsevier Ltd: 226–34.
  • Wang H, Xu J. “Multi-objective optimization for organic rankine cycle using BP-GA algorithm. ” Proc Chin Soc Electr Eng 36(12) (2016) 3168–75.
  • Wang, J., Mengzhen D., Kaihong Y.. 2017. “Optimization on Pinch Point Temperature Difference of ORC System Based on AHP-Entropy Method.” Energy 141. Elsevier Ltd: 97–107.
  • Woodland, Brandon J., Davide Z., James E. B., Eckhard A. G. 2020. “Considerations on Alternative Organic Rankine Cycle Congurations for Low-Grade Waste Heat Recovery.” Energy 193. Elsevier Ltd: 116810.
  • Xi, H, M J Li, Y L He, W W Yang, and Y S Li. 2014. “Gt2014-26664 Low-Temperature Organic Rankine Cycle for Power Generation,” 1–7.
  • Xi, H., Ming J. L., Ya L. H., Wen Q. T. 2015. “A Graphical Criterion for Working Fluid Selection and Thermodynamic System Comparison in Waste Heat Recovery.” Applied Thermal Engineering 89. Elsevier Ltd: 772–82.
  • Yang, F., Hongguang Z., Chen B., Songsong S., Enhua W. 2015. “Parametric Optimization and Performance Analysis of ORC (Organic Rankine Cycle) for Diesel Engine Waste Heat Recovery with a Fin-and-Tube Evaporator.” Energy 91. Elsevier Ltd: 128–41.

DETERMINATION OF OPTIMUM FLUID FOR DIFFERENT HEAT SOURCE TEMPERATURES BASED ON MULTI-OBJECTIVE FUNCTIONS IN THE ORGANIC RANKİNE CYCLE

Yıl 2023, Cilt: 11 Sayı: 1, 310 - 323, 27.03.2023
https://doi.org/10.21923/jesd.1011171

Öz

In this study, the optimum fluid was determined by using Non-dominated Sorting Genetic Algorithm-II (NSGA-II) within the scope of Organic Rankine Cycles (ORC) low temperature applications. Heat source temperatures are taken as 90, 100 and 110 °C. Fluid optimization was performed by comparing the performance of 8 fluids from 4 different categories under different criteria (dry-R601 and R601a, isentropic-R141b and R123, wet-R152a and R134a, new generations-R1234yf and R1234ze). Objective functions have been established under the parameters of Energy, Exergy, Economy and Environment (4E). In ORC systems, every organic fluid has certain advantages and disadvantages. It is seen that the studies on organic fluid selection meet a single goal from the system performance parameters. However, it has been observed that the turbine power performance is not at the desired level due to the required evaporator capacity of the fluid, which performs well in terms of thermal efficiency in ORC systems. Therefore, it is necessary to determine the percentage of organic fluid that can be used by optimizing it under different objective functions. In this study, the optimum fluid was determined for ORCs operating under 90, 100 and 110 °C heat source temperatures by evaluating different objective functions together.

Kaynakça

  • Agromayor, R., Lars O. N. 2017. “Fluid Selection and Thermodynamic Optimization of Organic Rankine Cycles for Waste Heat Recovery Applications.” Energy Procedia 129. Elsevier B.V.: 527–34.
  • Andreasen, J. G., U. Larsen, T. Knudsen, and F. Haglind. 2015. “Design and Optimization of a Novel Organic Rankine Cycle with Improved Boiling Process.” Energy 91. Elsevier Ltd: 48–59.
  • Andreasen, J. G., Larsen U., Knudsen T., Pierobon L., and Haglind F. 2014. “Selection and Optimization of Pure and Mixed Working Fluids for Low Grade Heat Utilization Using Organic Rankine Cycles.” Energy 73. Elsevier Ltd: 204–13.
  • Behzadi, A., Ehsan G., Ehsan H., and Ali H. 2018. “Multi-Objective Optimization and Exergoeconomic Analysis of Waste Heat Recovery from Tehran’s Waste-to-Energy Plant Integrated with an ORC Unit.” Energy 160. Elsevier B.V.: 1055–68.
  • Bian, S., Teng W., Jin F. Y. 2014. “Parametric Optimization of Organic Rankine Cycle by Genetic Algorithm.” Applied Mechanics and Materials 672–674: 741–45.
  • Boyaghchi, F. A., Mansoure C., Vajiheh S. 2015. “Optimization of a Novel Combined Cooling, Heating and Power Cycle Driven by Geothermal and Solar Energies Using the Water/CuO (Copper Oxide) Nanofluid.” Energy 91. Elsevier Ltd: 685–99.
  • Calm, James M., and Glenn C. Hourahan. 2007. “Refrigerant Data Update.” HPAC Heating, Piping, AirConditioning Engineering 79 (1): 50–64.
  • Donateo, T., Fazio A. 2014. “A Numerical Procedure for the Preliminary Design of a ORC Power Plants with Positive Displacement Expanders.” WSEAS Transactions on Environment and Development 10 (January 2014): 186–96.
  • Fiaschi, D., Adi L., Giampaolo M., Duccio T. 2014. “An Innovative ORC Power Plant Layout for Heat and Power Generation from Medium- to Low-Temperature Geothermal Resources.” Energy Conversion and Management 88. Elsevier Ltd: 883–93.
  • Gutiérrez A., César G., Faissal A., Hisham S. B., Medardo S. G., Mahmoud M. El-Halwagi, José M. Ponce-Ortega. 2015. “Industrial Waste Heat Recovery and Cogeneration Involving Organic Rankine Cycles.” Clean Technologies and Environmental Policy 17 (3): 767–79.
  • Han, Z., Yida Y., Yilin Y. 2013. “Selection of Working Fluids for Solar Thermal Power Generation with Organic Rankine Cycles System Based on Genetic Algorithm.” ICMREE 2013 - Proceedings: 2013 International Conference on Materials for Renewable Energy and Environment 1: 102–6.
  • Huster, W. R., Artur M. S., Alexander M. 2020. “Working Fluid Selection for Organic Rankine Cycles via Deterministic Global Optimization of Design and Operation.” Optimization and Engineering 21 (2). Springer US: 517–36.
  • Imran, M., Byung S. P., Hyouck J. K., Dong H. L., Muhammad U., Manki H. 2014. “Thermo-Economic ptimization of Regenerative Organic Rankine Cycle for Waste Heat Recovery Applications.” Energy Conversion and Management 87. Elsevier Ltd: 107–18.
  • Jankowski, M., Aleksandra B., Katarzyna S. D., Giuseppe I.. 2019. “Determination of an Optimal Pinch Point Temperature Difference Interval in ORC Power Plant Using Multi-Objective Approach.” Journal of Cleaner Production 217: 798–807.
  • Javan, S., Vahid M., Pouria A., Pedram H. 2016. “Fluid Selection Optimization of a Combined Cooling, Heating and Power (CCHP) System for Residential Applications.” Applied Thermal Engineering 96. Elsevier Ltd: 26–38.
  • Kai, Z., Zhang M., Wang Y., Sun Z., Liu S., and Ning J.. 2015. “Parametric Optimization of Low Temperature ORC System.” Energy Procedia 75. Elsevier B.V.: 1596–1602.
  • Khaljani, M., R. Khoshbakhti S., Bahlouli K. 2015. “Thermodynamic and Thermoeconomic Optimization of an Integrated Gas Turbine and Organic Rankine Cycle.” Energy 93. Elsevier Ltd: 2136–45.
  • Larsen, U., Oskar S., Fredrik H. 2014. “A Comparison of Advanced Heat Recovery Power Cycles in a Combined Cycle for Large Ships.” Energy 74 (C). Elsevier Ltd: 260–68.
  • Long, R., Y. J. Bao, X. M. Huang, and W. Liu. 2014. “Exergy Analysis and Working Fluid Selection of Organic Rankine Cycle for Low Grade Waste Heat Recovery.” Energy 73. Elsevier Ltd: 475–83.
  • Nazari, N., Parisa H., and Soheil P. 2016. “Multi-Objective Optimization of a Combined Steam-Organic Rankine Cycle Based on Exergy and Exergo-Economic Analysis for Waste Heat Recovery Application.” Energy Conversion and Management 127. Elsevier Ltd: 366–79.
  • Pierobon, L., Masoud R., Ulrik L., and Fredrik H. 2013. “Thermodynamic Analysis of an Integrated Gasification Solid Oxide Fuel Cell Plant Combined with an Organic Rankine Cycle.” Renewable Energy 60. Elsevier Ltd: 226–34.
  • Wang H, Xu J. “Multi-objective optimization for organic rankine cycle using BP-GA algorithm. ” Proc Chin Soc Electr Eng 36(12) (2016) 3168–75.
  • Wang, J., Mengzhen D., Kaihong Y.. 2017. “Optimization on Pinch Point Temperature Difference of ORC System Based on AHP-Entropy Method.” Energy 141. Elsevier Ltd: 97–107.
  • Woodland, Brandon J., Davide Z., James E. B., Eckhard A. G. 2020. “Considerations on Alternative Organic Rankine Cycle Congurations for Low-Grade Waste Heat Recovery.” Energy 193. Elsevier Ltd: 116810.
  • Xi, H, M J Li, Y L He, W W Yang, and Y S Li. 2014. “Gt2014-26664 Low-Temperature Organic Rankine Cycle for Power Generation,” 1–7.
  • Xi, H., Ming J. L., Ya L. H., Wen Q. T. 2015. “A Graphical Criterion for Working Fluid Selection and Thermodynamic System Comparison in Waste Heat Recovery.” Applied Thermal Engineering 89. Elsevier Ltd: 772–82.
  • Yang, F., Hongguang Z., Chen B., Songsong S., Enhua W. 2015. “Parametric Optimization and Performance Analysis of ORC (Organic Rankine Cycle) for Diesel Engine Waste Heat Recovery with a Fin-and-Tube Evaporator.” Energy 91. Elsevier Ltd: 128–41.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Mühendisliği
Bölüm Araştırma Makaleleri \ Research Articles
Yazarlar

Sadık Ata 0000-0002-6791-593X

Ali Kahraman 0000-0002-5598-5017

Remzi Şahin 0000-0001-7656-7538

Yayımlanma Tarihi 27 Mart 2023
Gönderilme Tarihi 17 Ekim 2021
Kabul Tarihi 2 Aralık 2022
Yayımlandığı Sayı Yıl 2023 Cilt: 11 Sayı: 1

Kaynak Göster

APA Ata, S., Kahraman, A., & Şahin, R. (2023). DETERMINATION OF OPTIMUM FLUID FOR DIFFERENT HEAT SOURCE TEMPERATURES BASED ON MULTI-OBJECTIVE FUNCTIONS IN THE ORGANIC RANKİNE CYCLE. Mühendislik Bilimleri Ve Tasarım Dergisi, 11(1), 310-323. https://doi.org/10.21923/jesd.1011171