Araştırma Makalesi
BibTex RIS Kaynak Göster

AÇIK MADEN OCAKLARINDA İNSANSIZ HAVA ARACI (İHA) KULLANIMI

Yıl 2023, Cilt: 11 Sayı: 1, 225 - 235, 27.03.2023
https://doi.org/10.21923/jesd.1090190

Öz

Teknolojik gelişmelere paralel olarak son birkaç on yılda veri elde etme yöntemlerinde önemli bir gelişme olmuştur. Ancak dijitalleşmenin katlanarak gelişmesiyle birlikte veriler daha karmaşık hale gelmiş ve elde edilen verilerden anlamlı bilgilere hızlı bir şekilde ulaşmak önem arz etmeye başlamıştır. Günümüzde İnsansız Hava Araçları (İHA), maliyet, zaman ve iş güvenliği açısından avantajlı olması ve yüksek performanslı kamera, pil ve küresel konumlandırma sistemlerine sahip olması nedeniyle birçok disiplin tarafından farklı amaçlar doğrultusunda kullanılmaktadır. İHA ve modern fotogrametrik yöntemleri kullanan görüntü işleme yazılımlarının gelişmesi, açık maden işletme alanlarında harita ve 3 Boyutlu (3B) model üretimi çalışmalarına hız kazandırmıştır. Özellikle İHA ile zorlu arazi koşullarında kolay, hızlı, yüksek hassasiyetli ve ekonomik ölçümler yapılabilmektedir. Bu çalışmada, açık maden ocaklarında İHA tabanlı haritalama ile üretilen ortofoto haritalar ve Sayısal Yükseklik Modelleri (SYM) ile stok ve döküm hacmi belirleme ve ölçüm çalışmaları klasik yöntemler ile karşılaştırılmıştır. Çalışmada 0.13 km2‘lik bir açık maden ocağı İHA’dan elde edilen görüntüler ile modellenmiştir ve kazı hacimleri hesaplanmıştır. Çalışma kapsamında klasik hacim hesaplaması ile iki farklı yazılımda yapılan analiz sonucunda 0.98 ve 0.95 oranında doğruluk elde edilmiştir.

Kaynakça

  • Alptekin, A., Yakar, M., 2020. Determination of pond volume with using an unmanned aerial vehicle. Mersin Photogrammetry Journal, 2(2), 59-63.
  • Anderson, K., Westoby, M.J., James, M.R., 2019. Low-budget topographic surveying comes of age: Structure from motion photogrammetry in geography and the geosciences. Progress in Physical Geography: Earth and Environment, 43(2), 163-173.
  • Barbero-García, I., Lerma, J. L., Mora-Navarro, G., 2020. Fully automatic smartphone-based photogrammetric 3D modelling of infant’s heads for cranial deformation analysis. ISPRS Journal of Photogrammetry and Remote Sensing, 166, 268-277.
  • Bemis, S.P., Micklethwaite, S., Turner, D., James, M.R., Akciz, S., Thiele, S.T., Bangash, H.A., 2014. Ground-based and UAV-Based photogrammetry: A multi-scale, high-resolution mapping tool for structural geology and paleoseismology. Journal of Structural Geology, 69, 163-178.
  • Bot, J. A., Irschick, D. J., Grayburn, J., Lischer-Katz, Z., Golubiewski-Davis, K., Ikeshoji-Orlati, V., 2019. Using 3D photogrammetry to create open-access models of live animals: 2D and 3D software solutions. 3, 54-72.
  • Bui, X.N., Lee, C., Nguyen, Q.L., Adeel, A., Cao, X.C., Nguyen, V.N., Le V.C., Nguyen H., Le Q.T., Duong, T.H., Nguyen, V.D., 2019. Use of unmanned aerial vehicles for 3D topographic mapping and monitoring the air quality of open-pit mines. Inżynieria Mineralna, 21.
  • Can, F., Polat, A.B., Akçay, Ö. 2022. Açık Maden Ocağının Fotogrametrik Yöntem ile Geometrik ve Spektral Analizi: Bigadiç Bor Maden İşletmesi Örneği. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 22 (1), 175-186.
  • Carrivick, J.L., Smith, M.W., 2019. Fluvial and aquatic applications of Structure from Motion photogrammetry and unmanned aerial vehicle/drone technology. Wiley Interdisciplinary Reviews: Water, 6(1), e1328.
  • Chiabrando, F., Donadio, E., Rinaudo, F., 2015. SfM for orthophoto to generation: A winning approach for cultural heritage knowledge. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 40(5), 91.
  • Demir, B. G., Güngör, N., 2013. Mermer Madenciliği ve Çevre. İstanbul Aydın Üniversitesi Dergisi, 5(20), 7-14.
  • Dietrich, J.T., 2017. Bathymetric structure‐from‐motion: Extracting shallow stream bathymetry from multi‐view stereo photogrammetry. Earth Surface Processes and Landforms, 42(2), 355-364.
  • Egels, Y., Kasser, M., 2001. Digital photogrammetry. CRC Press.
  • Eker, R., Aydın, A., 2021. Long-term retrospective investigation of a large, deep-seated, and slow-moving landslide using InSAR time series, historical aerial photographs, and UAV data: The case of Devrek landslide (NW Turkey). Catena, 196, 104895.
  • Erener, A., 2011. Remote Sensing of Vegetation Health For Reclaimed Areas of Seyitömer Open Cast Coal Mine. International Journal of Coal Geology, 86: 20-26.
  • Fonstad, M.A., Dietrich, J.T., Courville, B.C., Jensen, J.L., Carbonneau, P.E., 2013. Topographic structure from motion: a new development in photogrammetric measurement. Earth surface processes and Landforms, 38(4), 421-430.
  • Glendell, M., McShane, G., Farrow, L., James, M.R., Quinton, J., Anderson, K., Evans, M., Benaud, P., Rawlins, P., Morgan, D., Jones, L., Kirkham, M., Quine, T.A., Lark, M., Rickson, J., Brazier, R.E., 2017. Testing the utility of structure‐from‐motion photogrammetry reconstructions using small unmanned aerial vehicles and ground photography to estimate the extent of upland soil erosion. Earth Surface Processes and Landforms, 42(12), 1860-1871.
  • Gül Y., 2019. Açık maden işletmelerinde insansız hava aracı (İHA) uygulamaları. Türkiye Jeoloji Bülteni, 62(1), 99-112.
  • Hamal, S. N. G., Sarı, B., Ulvi, A., 2020. Using of hybrid data acquisition techniques for cultural heritage a case study of pompeiopolis. Türkiye İnsansız Hava Araçları Dergisi, 2(2), 55-60.
  • İncekara, A. H., Delen, A., Bakırman, T., Bayram, B., Şeker, D. Z., 2018. Açık Maden Saha Sınırlarının Piksel Tabanlı ve Nesne Tabanlı Sınıflandırma Teknikleri İle Çıkarımı. VII. Uzaktan Algılama ve CBS Sempozyumu, 18-21 Eylül 2018, Eskişehir.
  • Kun M., Özcan, B., 2019. Maden ocaklarında insansız hava aracı kullanımı: örnek bir saha çalışması. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 21(2), 554-564.
  • Linder, W., 2009. Digital photogrammetry. Berlin, Germany: Springer.
  • Paull, D., Banks, G., Ballard, C., Gillieson, D., 2006. Monitoring the Environmental Impact of Mining in Remote Locations through Remotely Sensed Data. Geocarto International, 21(1): 33-42.
  • Sarı, B., Hamal, S. N. G., Ulvi, A., 2020. Documentation of complex structure using Unmanned Aerial Vehicle (UAV) photogrammetry method and Terrestrial Laser Scanner (TLS). Türkiye Lidar Dergisi, 2(2), 48-54.
  • Schenk, T., 2005. Introduction to photogrammetry. The Ohio State University, Columbus, 106.
  • Tong, X., Liu, X., Chen, P., Liu, S., Luan, K., Li, L., Liu, S., Liu, X., Xie, H., Jin, Y., Hong, Z., 2015. Integration of UAV-based photogrammetry and terrestrial laser scanning for the three-dimensional mapping and monitoring of open-pit mine areas. Remote Sensing, 7(6), 6635-6662.
  • Ulvi, A., 2021. Documentation, Three-Dimensional (3D) Modelling and visualization of cultural heritage by using Unmanned Aerial Vehicle (UAV) photogrammetry and terrestrial laser scanners. International Journal of Remote Sensing, 42(6), 1994-2021.
  • Ulvi, A., Toprak, A.S., 2016. Investigation of three-dimensional modelling availability taken photograph of the unmanned aerial vehicle; sample of kanlidivane church. International Journal of Engineering and Geosciences, 1(1), 1-7.
  • Uysal, M., Toprak, A.S., Polat, N., 2015. DEM generation with UAV Photogrammetry and accuracy analysis in Sahitler hill. Measurement, 73, 539-543.
  • Vincent, C., Wagnon, P., Shea, J.M., Immerzeel, W.W., Kraaijenbrink, P., Shrestha, D., Soruco, A., Arnaud, Y., brun, F., Berthier, E., Sherpa, S. F., 2016. Reduced melt on debris-covered glaciers: investigations from Changri Nup Glacier, Nepal. The Cryosphere, 10(4), 1845-1858.
  • Woodget, A. S., Carbonneau, P. E., Visser, F., & Maddock, I. P. (2015). Quantifying submerged fluvial topography using hyperspatial resolution UAS imagery and structure from motion photogrammetry. Earth Surface Processes and Landforms, 40(1), 47-64.
  • Xiang, J., Chen, J., Sofia, G., Tian, Y., Tarolli, P., 2018. Open-pit mine geomorphic changes analysis using multi-temporal UAV survey. Environmental earth sciences, 77(6), 1-18.
  • Yadigar, E., Toptanı, A.R, Gül, S., 2014. Mevzuat Kapsamında Mermer Sahalarının Rehabilitasyonu, Ulusal Mermer ve Taş Ocakları Onarım Teknikleri Sempozyumu, Bildiriler kitabı, 9-17., Isparta.
  • Zhang, H., Aldana-Jague, E., Clapuyt, F., Wilken, F., Vanacker, V., Van Oost, K., 2019. Evaluating the potential of post-processing kinematic (PPK) georeferencing for UAV-based structure-from-motion (SfM) photogrammetry and surface change detection. Earth Surface Dynamics, 7(3), 807-827.
  • URL-1. https://mapeg.gov.tr/Custom/Madenistatistik
  • URL-2. https://mapeg.gov.tr/Uploads/MadenHaritaStandartlari/MAPEG%20HAR%C4%B0TA%20STANDARTLARI.pdf

USING UNMANNED AERIAL VEHICLE (UAV) IN OPEN-CAST MINES

Yıl 2023, Cilt: 11 Sayı: 1, 225 - 235, 27.03.2023
https://doi.org/10.21923/jesd.1090190

Öz

In parallel with technological developments, there has been a significant improvement in data acquisition methods in the last few decades. Today, Unmanned Aerial Vehicles (UAVs) have started to be preferred by many disciplines for different purposes due to their advantage in terms of cost, time, and safety, and due to their rapidly shrinking and high-performance camera, battery, and global positioning systems. The development of image processing software using UAVs and modern photogrammetric methods has accelerated the production of maps and 3D models in open mining areas. Especially with UAVs, easy, fast, high precision and economical measurements can be made in difficult terrain conditions. In this study, orthophoto and Digital Elevation Models (DEM) produced by UAV-based mapping in open pits and stock and pile volume determination and measurement studies were compared with classical methods. In the study, an open-cast mine of 0.13 km2 was modeled with images obtained from UAV and excavation volumes were calculated. Within the scope of the study, as a result of the classical volume calculation and the analysis made in two different software, an accuracy of 0.98 and 0.95 was obtained.

Kaynakça

  • Alptekin, A., Yakar, M., 2020. Determination of pond volume with using an unmanned aerial vehicle. Mersin Photogrammetry Journal, 2(2), 59-63.
  • Anderson, K., Westoby, M.J., James, M.R., 2019. Low-budget topographic surveying comes of age: Structure from motion photogrammetry in geography and the geosciences. Progress in Physical Geography: Earth and Environment, 43(2), 163-173.
  • Barbero-García, I., Lerma, J. L., Mora-Navarro, G., 2020. Fully automatic smartphone-based photogrammetric 3D modelling of infant’s heads for cranial deformation analysis. ISPRS Journal of Photogrammetry and Remote Sensing, 166, 268-277.
  • Bemis, S.P., Micklethwaite, S., Turner, D., James, M.R., Akciz, S., Thiele, S.T., Bangash, H.A., 2014. Ground-based and UAV-Based photogrammetry: A multi-scale, high-resolution mapping tool for structural geology and paleoseismology. Journal of Structural Geology, 69, 163-178.
  • Bot, J. A., Irschick, D. J., Grayburn, J., Lischer-Katz, Z., Golubiewski-Davis, K., Ikeshoji-Orlati, V., 2019. Using 3D photogrammetry to create open-access models of live animals: 2D and 3D software solutions. 3, 54-72.
  • Bui, X.N., Lee, C., Nguyen, Q.L., Adeel, A., Cao, X.C., Nguyen, V.N., Le V.C., Nguyen H., Le Q.T., Duong, T.H., Nguyen, V.D., 2019. Use of unmanned aerial vehicles for 3D topographic mapping and monitoring the air quality of open-pit mines. Inżynieria Mineralna, 21.
  • Can, F., Polat, A.B., Akçay, Ö. 2022. Açık Maden Ocağının Fotogrametrik Yöntem ile Geometrik ve Spektral Analizi: Bigadiç Bor Maden İşletmesi Örneği. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 22 (1), 175-186.
  • Carrivick, J.L., Smith, M.W., 2019. Fluvial and aquatic applications of Structure from Motion photogrammetry and unmanned aerial vehicle/drone technology. Wiley Interdisciplinary Reviews: Water, 6(1), e1328.
  • Chiabrando, F., Donadio, E., Rinaudo, F., 2015. SfM for orthophoto to generation: A winning approach for cultural heritage knowledge. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 40(5), 91.
  • Demir, B. G., Güngör, N., 2013. Mermer Madenciliği ve Çevre. İstanbul Aydın Üniversitesi Dergisi, 5(20), 7-14.
  • Dietrich, J.T., 2017. Bathymetric structure‐from‐motion: Extracting shallow stream bathymetry from multi‐view stereo photogrammetry. Earth Surface Processes and Landforms, 42(2), 355-364.
  • Egels, Y., Kasser, M., 2001. Digital photogrammetry. CRC Press.
  • Eker, R., Aydın, A., 2021. Long-term retrospective investigation of a large, deep-seated, and slow-moving landslide using InSAR time series, historical aerial photographs, and UAV data: The case of Devrek landslide (NW Turkey). Catena, 196, 104895.
  • Erener, A., 2011. Remote Sensing of Vegetation Health For Reclaimed Areas of Seyitömer Open Cast Coal Mine. International Journal of Coal Geology, 86: 20-26.
  • Fonstad, M.A., Dietrich, J.T., Courville, B.C., Jensen, J.L., Carbonneau, P.E., 2013. Topographic structure from motion: a new development in photogrammetric measurement. Earth surface processes and Landforms, 38(4), 421-430.
  • Glendell, M., McShane, G., Farrow, L., James, M.R., Quinton, J., Anderson, K., Evans, M., Benaud, P., Rawlins, P., Morgan, D., Jones, L., Kirkham, M., Quine, T.A., Lark, M., Rickson, J., Brazier, R.E., 2017. Testing the utility of structure‐from‐motion photogrammetry reconstructions using small unmanned aerial vehicles and ground photography to estimate the extent of upland soil erosion. Earth Surface Processes and Landforms, 42(12), 1860-1871.
  • Gül Y., 2019. Açık maden işletmelerinde insansız hava aracı (İHA) uygulamaları. Türkiye Jeoloji Bülteni, 62(1), 99-112.
  • Hamal, S. N. G., Sarı, B., Ulvi, A., 2020. Using of hybrid data acquisition techniques for cultural heritage a case study of pompeiopolis. Türkiye İnsansız Hava Araçları Dergisi, 2(2), 55-60.
  • İncekara, A. H., Delen, A., Bakırman, T., Bayram, B., Şeker, D. Z., 2018. Açık Maden Saha Sınırlarının Piksel Tabanlı ve Nesne Tabanlı Sınıflandırma Teknikleri İle Çıkarımı. VII. Uzaktan Algılama ve CBS Sempozyumu, 18-21 Eylül 2018, Eskişehir.
  • Kun M., Özcan, B., 2019. Maden ocaklarında insansız hava aracı kullanımı: örnek bir saha çalışması. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 21(2), 554-564.
  • Linder, W., 2009. Digital photogrammetry. Berlin, Germany: Springer.
  • Paull, D., Banks, G., Ballard, C., Gillieson, D., 2006. Monitoring the Environmental Impact of Mining in Remote Locations through Remotely Sensed Data. Geocarto International, 21(1): 33-42.
  • Sarı, B., Hamal, S. N. G., Ulvi, A., 2020. Documentation of complex structure using Unmanned Aerial Vehicle (UAV) photogrammetry method and Terrestrial Laser Scanner (TLS). Türkiye Lidar Dergisi, 2(2), 48-54.
  • Schenk, T., 2005. Introduction to photogrammetry. The Ohio State University, Columbus, 106.
  • Tong, X., Liu, X., Chen, P., Liu, S., Luan, K., Li, L., Liu, S., Liu, X., Xie, H., Jin, Y., Hong, Z., 2015. Integration of UAV-based photogrammetry and terrestrial laser scanning for the three-dimensional mapping and monitoring of open-pit mine areas. Remote Sensing, 7(6), 6635-6662.
  • Ulvi, A., 2021. Documentation, Three-Dimensional (3D) Modelling and visualization of cultural heritage by using Unmanned Aerial Vehicle (UAV) photogrammetry and terrestrial laser scanners. International Journal of Remote Sensing, 42(6), 1994-2021.
  • Ulvi, A., Toprak, A.S., 2016. Investigation of three-dimensional modelling availability taken photograph of the unmanned aerial vehicle; sample of kanlidivane church. International Journal of Engineering and Geosciences, 1(1), 1-7.
  • Uysal, M., Toprak, A.S., Polat, N., 2015. DEM generation with UAV Photogrammetry and accuracy analysis in Sahitler hill. Measurement, 73, 539-543.
  • Vincent, C., Wagnon, P., Shea, J.M., Immerzeel, W.W., Kraaijenbrink, P., Shrestha, D., Soruco, A., Arnaud, Y., brun, F., Berthier, E., Sherpa, S. F., 2016. Reduced melt on debris-covered glaciers: investigations from Changri Nup Glacier, Nepal. The Cryosphere, 10(4), 1845-1858.
  • Woodget, A. S., Carbonneau, P. E., Visser, F., & Maddock, I. P. (2015). Quantifying submerged fluvial topography using hyperspatial resolution UAS imagery and structure from motion photogrammetry. Earth Surface Processes and Landforms, 40(1), 47-64.
  • Xiang, J., Chen, J., Sofia, G., Tian, Y., Tarolli, P., 2018. Open-pit mine geomorphic changes analysis using multi-temporal UAV survey. Environmental earth sciences, 77(6), 1-18.
  • Yadigar, E., Toptanı, A.R, Gül, S., 2014. Mevzuat Kapsamında Mermer Sahalarının Rehabilitasyonu, Ulusal Mermer ve Taş Ocakları Onarım Teknikleri Sempozyumu, Bildiriler kitabı, 9-17., Isparta.
  • Zhang, H., Aldana-Jague, E., Clapuyt, F., Wilken, F., Vanacker, V., Van Oost, K., 2019. Evaluating the potential of post-processing kinematic (PPK) georeferencing for UAV-based structure-from-motion (SfM) photogrammetry and surface change detection. Earth Surface Dynamics, 7(3), 807-827.
  • URL-1. https://mapeg.gov.tr/Custom/Madenistatistik
  • URL-2. https://mapeg.gov.tr/Uploads/MadenHaritaStandartlari/MAPEG%20HAR%C4%B0TA%20STANDARTLARI.pdf
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yer Bilimleri ve Jeoloji Mühendisliği (Diğer)
Bölüm Araştırma Makaleleri \ Research Articles
Yazarlar

Abdurahman Yasin Yiğit 0000-0002-9407-8022

Yunus Kaya 0000-0003-2319-4998

Halil İbrahim Şenol 0000-0003-0235-5764

Yayımlanma Tarihi 27 Mart 2023
Gönderilme Tarihi 19 Mart 2022
Kabul Tarihi 29 Kasım 2022
Yayımlandığı Sayı Yıl 2023 Cilt: 11 Sayı: 1

Kaynak Göster

APA Yiğit, A. Y., Kaya, Y., & Şenol, H. İ. (2023). AÇIK MADEN OCAKLARINDA İNSANSIZ HAVA ARACI (İHA) KULLANIMI. Mühendislik Bilimleri Ve Tasarım Dergisi, 11(1), 225-235. https://doi.org/10.21923/jesd.1090190