Araştırma Makalesi
BibTex RIS Kaynak Göster

THE EFFECT OF TOP FILLING LAYER ON REDUCTION OF LIQUEFACTION-INDUCED SETTLEMENT: A CASE STUDY

Yıl 2023, Cilt: 11 Sayı: 1, 126 - 144, 27.03.2023
https://doi.org/10.21923/jesd.1174506

Öz

The type of soil layers, their geotechnical properties, dynamic behavior, and liquefaction occurs due to earthquake characteristics are among the main soil-related factors that may have negative effects on the behavior of engineering structures during earthquakes. Liquefaction-induced settlements should be predicted to reflect the truth, and an appropriate improvement method that can be proven to be economical and controllable with engineering studies should be selected and measures should be taken. In this study to limit the liquefaction-induced settlements, it is proposed to construct an engineering fill layer of a certain thickness on the liquefied layer, considering the Ishihara criterion, and the changes in the liquefaction-induced settlements after the improvement were investigated by numerical analysis in which the dynamic behavior of the sand soil layers was completed with the PM4Sand Constituent Model. In addition, liquefaction-induced settlements before the improvement were also calculated with different semi-empirical relations and compared with the numerical analysis results, the most appropriate semi-empirical correlation was determined. It is thought that the study will be an alternative to the commonly used improvement methods and can provide an exemplary engineering practice for the cost-effective design of soil improvement with the construction of a non-liquefied layer on the liquefied layer.

Kaynakça

  • Adalier, K., Elgamal, A., Meneses, J., Baez, J. I., 2003. Stone columns as liquefaction countermeasure in non-plastic silty soils. Soil Dynamics and Earthquake Engineering, 23(7), 571-584.
  • Alver, O., Sezen, A., Eseller-Bayat, E. E. (2021). Tbdy 2018'e Göre Geoteknik Tasarım: Sıvılaşma Ve Yapı-Kazık-Zemin Etkileşimi Analizleri. Teknik Dergi, 32(5), 11197-11226.
  • Álamo, G. M., Padrón, L. A., Aznárez, J. J., Maeso, O., 2022. Numerical model for the dynamic and seismic analysis of pile-supported structures with a meshless integral representation of the layered soil. Bulletin of Earthquake Engineering, 20(7), 3215-3238.
  • Başarı, E. (2011). KUZEY-DOĞU BURSA İL MERKEZİ ZEMİNLERİNİN DİNAMİK ZEMİN DAVRANIŞ ANALİZLERİ. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 13(1), 39-53.
  • Beaty, M. H., Byrne, P. M., 2011. UBCSAND constitutive model version 904aR. Itasca UDM Web Site, 69.
  • Boulanger, R. W., Ziotopoulou, K., 2018. PM4Silt (Version 1): A silt plasticity model for earthquake engineering applications. Report No. UCD/CGM-18/01, Center for Geotechnical Modeling, Department of Civil and Environmental Engineering, University of California, Davis, CA, 108 pp.
  • Bray, J. D., Dashti, S., 2014. Liquefaction-induced building movements. Bulletin of Earthquake Engineering, 12(3), 1129-1156.
  • Carey, J. M., McSaveney, M. J., & Petley, D. N. (2017). Dynamic liquefaction of shear zones in intact loess during simulated earthquake loading. Landslides, 14(3), 789-804.
  • Cetin, K. O., Bilge, H. T., Wu, J., Kammerer, A. M., Seed, R. B., 2009. Probabilistic model for the assessment of cyclically induced reconsolidation (volumetric) settlements. Journal of Geotechnical and Geoenvironmental Engineering, 135(3), 387.
  • Cetin, K. O., Seed, R. B., Kayen, R. E., Moss, R. E., Bilge, H. T., Ilgac, M., Chowdhury, K., 2018. Examination of differences between three SPT-based seismic soil liquefaction triggering relationships. Soil Dynamics and Earthquake Engineering, 113, 75-86.
  • Chafale, A., Annam, M. K., 2022. A Review on Ground Improvement with Surcharge in Addressing Liquefaction Mitigation. Dynamics of Soil and Modelling of Geotechnical Problems, 367-375.
  • Chen, G., Wang, Y., Zhao, D., Zhao, K., Yang, J., 2021. A new effective stress method for [38] nonlinear site response analyses. Earthquake Engineering & Structural Dynamics, 50(6), 1595-1611.
  • Chiaradonna, A., 2022. Defining the Boundary Conditions for Seismic Response Analysis—A Practical Review of Some Widely-Used Codes. Geosciences, 12(2), 83.
  • Dafalias, Y. F., Manzari, M. T., 2004. Simple plasticity sand model accounting for fabric change effects. Journal of Engineering mechanics, 130(6), 622-634.
  • Das, A., Chakrabortty, P., 2022. Simple models for predicting cyclic behaviour of sand in quaternary alluvium. Arabian Journal of Geosciences, 15(5), 1-19.
  • Dashti, S., Bray, J. D., Pestana, J. M., Riemer, M., Wilson, D., 2010. Centrifuge testing to evaluate and mitigate liquefaction-induced building settlement mechanisms. Journal of geotechnical and geoenvironmental engineering, 136(7), 918.
  • Demiroz, A., Yildiz, F., 2021. Investigation of the dynamic behavior of soils of Konya Organized Industrial Zone by equivalent linear analysis method. Selcuk University Journal of Engineering Sciences, 20(3), 98-104.
  • Dimitriadi, V. E., Bouckovalas, G. D., Chaloulos, Y. K., Aggelis, A. S., 2018. Seismic liquefaction performance of strip foundations: effect of ground improvement dimensions. Soil Dynamics and Earthquake Engineering, 106, 298-307.
  • Dogan, G., Ecemis, A. S., Korkmaz, S. Z., Arslan, M. H., Korkmaz, H. H., 2021. Buildings Damages after Elazığ, Turkey Earthquake on January 24, 2020. Natural hazards, 109(1), 161-200.
  • Doyuran, V., Koçyigˇit, A., Yazıcıgil, H., Karahanoğlu, N., Toprak, V., Topal, T., Süzen, M.L., Yeşilnacar, E., Yılmaz, K.K., 2000. Yenişehir Belediyesi Yerleşim Alanı Jeolojik/Jeoteknik İncelemesi. METU Project: 99-03-09-01-02. 227 pp., unpublished
  • Gong, W., Tien, Y. M., Juang, C. H., Martin II, J. R., Zhang, J., 2016. Calibration of empirical models considering model fidelity and model robustness—focusing on predictions of liquefaction-induced settlements. Engineering Geology, 203, 168-177.
  • Gurbuz, T., Cengiz, A., Kolemenoglu, S., Demir, C., Ilki, A., 2022. Damages and Failures of Structures in İzmir (Turkey) during the October 30, 2020 Aegean Sea Earthquake. Journal of Earthquake Engineering, 1-42.
  • Hanna, A. M., Ural, D., Saygili, G., 2007. Neural network model for liquefaction potential in soil deposits using Turkey and Taiwan earthquake data. Soil Dynamics and Earthquake Engineering, 27(6), 521-540.
  • Hashash, Y. M., Phillips, C., Groholski, D. R., 2010, May. Recent advances in non-linear site response analysis. In 5th International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics (No. 4).
  • Holzer, T. L., Youd, T. L.,2007. Liquefaction, ground oscillation, and soil deformation at the Wildlife Array, California. Bulletin of the Seismological society of America, 97(3), 961-976.
  • Huang, Y., Wen, Z., 2015. Recent developments of soil improvement methods for seismic liquefaction mitigation. Natural Hazards, 76(3), 1927-1938.
  • Huang, Y., Yashima, A., Sawada, K., Zhang, F., 2008. Numerical assessment of the seismic response of an earth embankment on liquefiable soils. Bulletin of Engineering Geology and the Environment, 67(1), 31-39.
  • Ishihara, K., 1985. Stability of natural deposits during earthquakes. In International conference on soil mechanics and foundation engineering. 11 (pp. 321-376).
  • Ishihara, K., Tatsuoka, F., Yasuda, S., 1975. Undrained deformation and liquefaction of sand under cyclic stresses. Soils and foundations, 15(1), 29-44.
  • Ishihara, K., Yoshimine, M., 1992. Evaluation of settlements in sand deposits following liquefaction during earthquakes. Soils and foundations, 32(1), 173-188.
  • Iwasaki, T., 1986. Soil liquefaction studies in Japan: state-of-the-art. Soil Dynamics and Earthquake Engineering, 5(1), 2-68.
  • Kumar S.S., Dey A., Krishna A.M., 2020. Liquefaction potential assessment of brahmaputra sand based on regular and irregular excitations using stress-controlled cyclic triaxial test. KSCE Journal of Civil Engineering 24(4):1070-1082, DOI: 10.1007/s12205-020-0216-x
  • Makdisi, A. J., 2021. Liquefaction-targeted ground motion parameters. University of Washington.
  • Manzari, M. T., Kutter, B. L., Zeghal, M., Iai, S., Tobita, T., Madabhushi, S. P. G., Zhou, Y. G., 2014, August. LEAP projects: Concept and challenges. In Proceedings of 4th International Conference on Geotechnical Engineering for Disaster Mitigation and Rehabilitation (pp. 109-116).
  • Moayed, R. Z., Naeini, S. A., 2012. Imrovement of loose sandy soil deposits using micropiles. KSCE Journal of Civil Engineering, 16(3), 334-340.
  • Nicholson, P. G., 2014. Soil improvement and ground modification methods. Butterworth-Heinemann.
  • Ntritsos, N., Cubrinovski, M., 2020. A CPT-based effective stress analysis procedure for liquefaction assessment. Soil Dynamics and Earthquake Engineering, 131, 106063.
  • Patel, A., 2019. Geotechnical investigations and improvement of ground conditions. Woodhead Publishing.
  • Pribadi, K. S., Abduh, M., Wirahadikusumah, R. D., Hanifa, N. R., Irsyam, M., Kusumaningrum, P., Puri, E., 2021. Learning from past earthquake disasters: The need for knowledge management system to enhance infrastructure resilience in Indonesia.
  • Şartnamesi, K. T., 2013. Kısım 402: Temel. Karayolları Teknik Şartnamesi.
  • Seed, H. B., Martin, P. P., Lysmer, J., 1975. “The generation and dissipation of pore water pressures during soil liquefaction.” Rep.No.EERC 75-26, Earthquake Engineering Research Center, Univ. of California, Berkeley, Ca.
  • Shamoto, Y., Zhang, J. M., Tokimatsu, K., 1998. New charts for predicting large residual post-liquefaction ground deformation. Soil dynamics and earthquake engineering, 17(7-8), 427-438.
  • Sonmez, B., Ulusay, R., Sonmez, H., 2008. A study on the identification of liquefaction-induced failures on ground surface based on the data from the 1999 Kocaeli and Chi-Chi earthquakes. Engineering Geology, 97(3-4), 112-125.
  • Streeter, V. L., Wylie, E. B., Richart Jr, F. E., 1974. Soil motion computations by characteristics method. Journal of the Geotechnical Engineering Division, 100(3), 247-263.
  • Subasi, O., Koltuk, S., Akbas, M., Iyisan, R., 2021, November. A Numerical Study on Liquefaction Induced Settlements by Using PM4Sand Model. In IOP Conference Series: Materials Science and Engineering (Vol. 1203, No. 3, p. 032029). IOP Publishing.
  • Taiebat, M., Shahir, H., Pak, A., 2007. Study of pore pressure variation during liquefaction using two constitutive models for sand. Soil Dynamics and Earthquake Engineering, 27(1), 60-72.
  • TBDY., 2018. Türkiye Bina Deprem Yönetmeliği. Ankara: Afet ve Acil Durum Yönetimi Başkanlığı.
  • Theodoulidis, N., Karakostas, C., Lekidis, V., Makra, K., Margaris, B., Morfidis, K., Savvaidis, A., 2016. The Cephalonia, Greece, January 26 (M6. 1) and February 3, 2014 (M6. 0) earthquakes: near-fault ground motion and effects on soil and structures. Bulletin of Earthquake Engineering, 14(1), 1-38.International Journal of Disaster Risk Reduction, 64, 102424.
  • Tokimatsu K, Hino K, Suzuki H, Ohno K, Tamura S, Suzuki Y., 2019. Liquefaction-induced settlement and tilting of buildings with shallow foundations based on field and laboratory observation. Soil Dynamics and Earthquake Engineering 124:268-279, DOI: 10.1016/ j.soildyn.2018.04.054
  • Tokimatsu K, Seed H.B., 1984. Simplified procedures of the evaluation of settlements in clean sands. Rep. No. UCB/GT-84/16, University of California Berkeley, Berkeley, CA, USA
  • Tokimatsu, K., Seed, H. B., 1984. Simplified procedures for the evaluation of settlements in clean sands. College of Engineering, University of California.
  • Tokimatsu, K., Yoshimi, Y., 1983. Empirical correlation of soil liquefaction based on SPT N-value and fines content. Soils and Foundations, 23(4), 56-74.
  • Tolon, M. (2013). Karşılaştırmalı Sayısal Sıvılaşma Analizi (Doctoral dissertation, Fen Bilimleri Enstitüsü).
  • Tosun, H., 2015. Earthquakes and dams. In Earthquake Engineering-From Engineering Seismology to Optimal Seismic Design of Engineering Structures. IntechOpen.
  • Vilhar, G., Brinkgreve, R., 2018. Plaxis the PM4Sand model 2018.
  • Wang, J., Deng, Y., Shao, Y., Liu, X., Feng, B., Wu, L., Peng, H.,2018. Liquefaction behavior of dredged silty-fine sands under cyclic loading for land reclamation: laboratory experiment and numerical simulation. Environmental Earth Sciences, 77(12), 1-15.
  • Wu, J., 2002. Liquefaction triggering and post-liquefaction deformation of Monterey 0/30 sand under unidirectional cyclic simple shear loading. University of California, Berkeley.
  • Ye, B., Ye, G., Zhang, F., Yashima, A., 2007. Experiment and numerical simulation of repeated liquefaction-consolidation of sand. Soils and Foundations, 47(3), 547-558.
  • Zhang, G., Robertson, P. K., Brachman, R. W. I., 2004. Estimating liquefaction-induced lateral displacements using the standard penetration test or cone penetration test. Journal of Geotechnical and Geoenvironmental Engineering, 130(8), 861-871.
  • Zhang, J. M., & Wang, G., 2012. Large post-liquefaction deformation of sand, part I: physical mechanism, constitutive description and numerical algorithm. Acta Geotechnica, 7(2), 69-113.

SIVILAŞMA KAYNAKLI OTURMALARIN AZALTILMASINDA ÜST DOLGU TABAKASININ ETKİSİ: BİR VAKA ANALİZİ

Yıl 2023, Cilt: 11 Sayı: 1, 126 - 144, 27.03.2023
https://doi.org/10.21923/jesd.1174506

Öz

Zemin tabakalarının cinsi, geoteknik özellikleri ve dinamik davranışı ile deprem özelliklerine bağlı olarak meydana gelen sıvılaşma, depremler sırasında mühendislik yapıların davranışı üzerinde olumsuz etkilere yol açabilecek zemin kaynaklı başlıca faktörler arasında yer almaktadır. Sıvılaşma kaynaklı oturmalar doğruyu yansıtacak şekilde öngörülmeli ve gerekmesi durumunda yapılan mühendislik çalışmaları ile ekonomik ve kontrol edilebilir olduğu kanıtlanabilen uygun bir iyileştirme yöntemi seçilerek önlem alınmadır. Bu çalışmada, sıvılaşma potansiyeli olan bir sahada meydana gelecek sıvılaşma kaynaklı oturmaları sınırlandırmak amacıyla Ishihara kriteri dikkate alınarak sıvılaşan tabaka üzerine belirli kalınlıkta bir mühendislik dolgu tabaka inşası önerilmiş ve iyileştirme sonrası sıvılaşma kaynaklı oturmalarda meydana gelen değişimler kum zemin tabakalarının dinamik davranışının PM4Sand Bünye Modeli ile tamamlandığı sayısal analizler ile incelenmiştir. Ayrıca iyileştirme öncesi sıvılaşma kaynaklı meydana gelecek oturma değerleri farklı yarı-ampirik bağıntılar ile de hesaplanmış ve sayısal analiz sonuçları ile karşılaştırılarak en uygun yarı-ampirik bağıntı belirlenmiştir. Yapılan çalışmanın yaygın olarak kullanılan iyileştirme yöntemlerine bir alternatif olacağı ve sıvılaşan tabaka üzerine sıvılaşmayan tabaka inşası ile zemin iyileştirmesinin maliyet etkin tasarımı için örnek bir mühendislik uygulama sağlayabileceği düşünülmektedir.

Kaynakça

  • Adalier, K., Elgamal, A., Meneses, J., Baez, J. I., 2003. Stone columns as liquefaction countermeasure in non-plastic silty soils. Soil Dynamics and Earthquake Engineering, 23(7), 571-584.
  • Alver, O., Sezen, A., Eseller-Bayat, E. E. (2021). Tbdy 2018'e Göre Geoteknik Tasarım: Sıvılaşma Ve Yapı-Kazık-Zemin Etkileşimi Analizleri. Teknik Dergi, 32(5), 11197-11226.
  • Álamo, G. M., Padrón, L. A., Aznárez, J. J., Maeso, O., 2022. Numerical model for the dynamic and seismic analysis of pile-supported structures with a meshless integral representation of the layered soil. Bulletin of Earthquake Engineering, 20(7), 3215-3238.
  • Başarı, E. (2011). KUZEY-DOĞU BURSA İL MERKEZİ ZEMİNLERİNİN DİNAMİK ZEMİN DAVRANIŞ ANALİZLERİ. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 13(1), 39-53.
  • Beaty, M. H., Byrne, P. M., 2011. UBCSAND constitutive model version 904aR. Itasca UDM Web Site, 69.
  • Boulanger, R. W., Ziotopoulou, K., 2018. PM4Silt (Version 1): A silt plasticity model for earthquake engineering applications. Report No. UCD/CGM-18/01, Center for Geotechnical Modeling, Department of Civil and Environmental Engineering, University of California, Davis, CA, 108 pp.
  • Bray, J. D., Dashti, S., 2014. Liquefaction-induced building movements. Bulletin of Earthquake Engineering, 12(3), 1129-1156.
  • Carey, J. M., McSaveney, M. J., & Petley, D. N. (2017). Dynamic liquefaction of shear zones in intact loess during simulated earthquake loading. Landslides, 14(3), 789-804.
  • Cetin, K. O., Bilge, H. T., Wu, J., Kammerer, A. M., Seed, R. B., 2009. Probabilistic model for the assessment of cyclically induced reconsolidation (volumetric) settlements. Journal of Geotechnical and Geoenvironmental Engineering, 135(3), 387.
  • Cetin, K. O., Seed, R. B., Kayen, R. E., Moss, R. E., Bilge, H. T., Ilgac, M., Chowdhury, K., 2018. Examination of differences between three SPT-based seismic soil liquefaction triggering relationships. Soil Dynamics and Earthquake Engineering, 113, 75-86.
  • Chafale, A., Annam, M. K., 2022. A Review on Ground Improvement with Surcharge in Addressing Liquefaction Mitigation. Dynamics of Soil and Modelling of Geotechnical Problems, 367-375.
  • Chen, G., Wang, Y., Zhao, D., Zhao, K., Yang, J., 2021. A new effective stress method for [38] nonlinear site response analyses. Earthquake Engineering & Structural Dynamics, 50(6), 1595-1611.
  • Chiaradonna, A., 2022. Defining the Boundary Conditions for Seismic Response Analysis—A Practical Review of Some Widely-Used Codes. Geosciences, 12(2), 83.
  • Dafalias, Y. F., Manzari, M. T., 2004. Simple plasticity sand model accounting for fabric change effects. Journal of Engineering mechanics, 130(6), 622-634.
  • Das, A., Chakrabortty, P., 2022. Simple models for predicting cyclic behaviour of sand in quaternary alluvium. Arabian Journal of Geosciences, 15(5), 1-19.
  • Dashti, S., Bray, J. D., Pestana, J. M., Riemer, M., Wilson, D., 2010. Centrifuge testing to evaluate and mitigate liquefaction-induced building settlement mechanisms. Journal of geotechnical and geoenvironmental engineering, 136(7), 918.
  • Demiroz, A., Yildiz, F., 2021. Investigation of the dynamic behavior of soils of Konya Organized Industrial Zone by equivalent linear analysis method. Selcuk University Journal of Engineering Sciences, 20(3), 98-104.
  • Dimitriadi, V. E., Bouckovalas, G. D., Chaloulos, Y. K., Aggelis, A. S., 2018. Seismic liquefaction performance of strip foundations: effect of ground improvement dimensions. Soil Dynamics and Earthquake Engineering, 106, 298-307.
  • Dogan, G., Ecemis, A. S., Korkmaz, S. Z., Arslan, M. H., Korkmaz, H. H., 2021. Buildings Damages after Elazığ, Turkey Earthquake on January 24, 2020. Natural hazards, 109(1), 161-200.
  • Doyuran, V., Koçyigˇit, A., Yazıcıgil, H., Karahanoğlu, N., Toprak, V., Topal, T., Süzen, M.L., Yeşilnacar, E., Yılmaz, K.K., 2000. Yenişehir Belediyesi Yerleşim Alanı Jeolojik/Jeoteknik İncelemesi. METU Project: 99-03-09-01-02. 227 pp., unpublished
  • Gong, W., Tien, Y. M., Juang, C. H., Martin II, J. R., Zhang, J., 2016. Calibration of empirical models considering model fidelity and model robustness—focusing on predictions of liquefaction-induced settlements. Engineering Geology, 203, 168-177.
  • Gurbuz, T., Cengiz, A., Kolemenoglu, S., Demir, C., Ilki, A., 2022. Damages and Failures of Structures in İzmir (Turkey) during the October 30, 2020 Aegean Sea Earthquake. Journal of Earthquake Engineering, 1-42.
  • Hanna, A. M., Ural, D., Saygili, G., 2007. Neural network model for liquefaction potential in soil deposits using Turkey and Taiwan earthquake data. Soil Dynamics and Earthquake Engineering, 27(6), 521-540.
  • Hashash, Y. M., Phillips, C., Groholski, D. R., 2010, May. Recent advances in non-linear site response analysis. In 5th International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics (No. 4).
  • Holzer, T. L., Youd, T. L.,2007. Liquefaction, ground oscillation, and soil deformation at the Wildlife Array, California. Bulletin of the Seismological society of America, 97(3), 961-976.
  • Huang, Y., Wen, Z., 2015. Recent developments of soil improvement methods for seismic liquefaction mitigation. Natural Hazards, 76(3), 1927-1938.
  • Huang, Y., Yashima, A., Sawada, K., Zhang, F., 2008. Numerical assessment of the seismic response of an earth embankment on liquefiable soils. Bulletin of Engineering Geology and the Environment, 67(1), 31-39.
  • Ishihara, K., 1985. Stability of natural deposits during earthquakes. In International conference on soil mechanics and foundation engineering. 11 (pp. 321-376).
  • Ishihara, K., Tatsuoka, F., Yasuda, S., 1975. Undrained deformation and liquefaction of sand under cyclic stresses. Soils and foundations, 15(1), 29-44.
  • Ishihara, K., Yoshimine, M., 1992. Evaluation of settlements in sand deposits following liquefaction during earthquakes. Soils and foundations, 32(1), 173-188.
  • Iwasaki, T., 1986. Soil liquefaction studies in Japan: state-of-the-art. Soil Dynamics and Earthquake Engineering, 5(1), 2-68.
  • Kumar S.S., Dey A., Krishna A.M., 2020. Liquefaction potential assessment of brahmaputra sand based on regular and irregular excitations using stress-controlled cyclic triaxial test. KSCE Journal of Civil Engineering 24(4):1070-1082, DOI: 10.1007/s12205-020-0216-x
  • Makdisi, A. J., 2021. Liquefaction-targeted ground motion parameters. University of Washington.
  • Manzari, M. T., Kutter, B. L., Zeghal, M., Iai, S., Tobita, T., Madabhushi, S. P. G., Zhou, Y. G., 2014, August. LEAP projects: Concept and challenges. In Proceedings of 4th International Conference on Geotechnical Engineering for Disaster Mitigation and Rehabilitation (pp. 109-116).
  • Moayed, R. Z., Naeini, S. A., 2012. Imrovement of loose sandy soil deposits using micropiles. KSCE Journal of Civil Engineering, 16(3), 334-340.
  • Nicholson, P. G., 2014. Soil improvement and ground modification methods. Butterworth-Heinemann.
  • Ntritsos, N., Cubrinovski, M., 2020. A CPT-based effective stress analysis procedure for liquefaction assessment. Soil Dynamics and Earthquake Engineering, 131, 106063.
  • Patel, A., 2019. Geotechnical investigations and improvement of ground conditions. Woodhead Publishing.
  • Pribadi, K. S., Abduh, M., Wirahadikusumah, R. D., Hanifa, N. R., Irsyam, M., Kusumaningrum, P., Puri, E., 2021. Learning from past earthquake disasters: The need for knowledge management system to enhance infrastructure resilience in Indonesia.
  • Şartnamesi, K. T., 2013. Kısım 402: Temel. Karayolları Teknik Şartnamesi.
  • Seed, H. B., Martin, P. P., Lysmer, J., 1975. “The generation and dissipation of pore water pressures during soil liquefaction.” Rep.No.EERC 75-26, Earthquake Engineering Research Center, Univ. of California, Berkeley, Ca.
  • Shamoto, Y., Zhang, J. M., Tokimatsu, K., 1998. New charts for predicting large residual post-liquefaction ground deformation. Soil dynamics and earthquake engineering, 17(7-8), 427-438.
  • Sonmez, B., Ulusay, R., Sonmez, H., 2008. A study on the identification of liquefaction-induced failures on ground surface based on the data from the 1999 Kocaeli and Chi-Chi earthquakes. Engineering Geology, 97(3-4), 112-125.
  • Streeter, V. L., Wylie, E. B., Richart Jr, F. E., 1974. Soil motion computations by characteristics method. Journal of the Geotechnical Engineering Division, 100(3), 247-263.
  • Subasi, O., Koltuk, S., Akbas, M., Iyisan, R., 2021, November. A Numerical Study on Liquefaction Induced Settlements by Using PM4Sand Model. In IOP Conference Series: Materials Science and Engineering (Vol. 1203, No. 3, p. 032029). IOP Publishing.
  • Taiebat, M., Shahir, H., Pak, A., 2007. Study of pore pressure variation during liquefaction using two constitutive models for sand. Soil Dynamics and Earthquake Engineering, 27(1), 60-72.
  • TBDY., 2018. Türkiye Bina Deprem Yönetmeliği. Ankara: Afet ve Acil Durum Yönetimi Başkanlığı.
  • Theodoulidis, N., Karakostas, C., Lekidis, V., Makra, K., Margaris, B., Morfidis, K., Savvaidis, A., 2016. The Cephalonia, Greece, January 26 (M6. 1) and February 3, 2014 (M6. 0) earthquakes: near-fault ground motion and effects on soil and structures. Bulletin of Earthquake Engineering, 14(1), 1-38.International Journal of Disaster Risk Reduction, 64, 102424.
  • Tokimatsu K, Hino K, Suzuki H, Ohno K, Tamura S, Suzuki Y., 2019. Liquefaction-induced settlement and tilting of buildings with shallow foundations based on field and laboratory observation. Soil Dynamics and Earthquake Engineering 124:268-279, DOI: 10.1016/ j.soildyn.2018.04.054
  • Tokimatsu K, Seed H.B., 1984. Simplified procedures of the evaluation of settlements in clean sands. Rep. No. UCB/GT-84/16, University of California Berkeley, Berkeley, CA, USA
  • Tokimatsu, K., Seed, H. B., 1984. Simplified procedures for the evaluation of settlements in clean sands. College of Engineering, University of California.
  • Tokimatsu, K., Yoshimi, Y., 1983. Empirical correlation of soil liquefaction based on SPT N-value and fines content. Soils and Foundations, 23(4), 56-74.
  • Tolon, M. (2013). Karşılaştırmalı Sayısal Sıvılaşma Analizi (Doctoral dissertation, Fen Bilimleri Enstitüsü).
  • Tosun, H., 2015. Earthquakes and dams. In Earthquake Engineering-From Engineering Seismology to Optimal Seismic Design of Engineering Structures. IntechOpen.
  • Vilhar, G., Brinkgreve, R., 2018. Plaxis the PM4Sand model 2018.
  • Wang, J., Deng, Y., Shao, Y., Liu, X., Feng, B., Wu, L., Peng, H.,2018. Liquefaction behavior of dredged silty-fine sands under cyclic loading for land reclamation: laboratory experiment and numerical simulation. Environmental Earth Sciences, 77(12), 1-15.
  • Wu, J., 2002. Liquefaction triggering and post-liquefaction deformation of Monterey 0/30 sand under unidirectional cyclic simple shear loading. University of California, Berkeley.
  • Ye, B., Ye, G., Zhang, F., Yashima, A., 2007. Experiment and numerical simulation of repeated liquefaction-consolidation of sand. Soils and Foundations, 47(3), 547-558.
  • Zhang, G., Robertson, P. K., Brachman, R. W. I., 2004. Estimating liquefaction-induced lateral displacements using the standard penetration test or cone penetration test. Journal of Geotechnical and Geoenvironmental Engineering, 130(8), 861-871.
  • Zhang, J. M., & Wang, G., 2012. Large post-liquefaction deformation of sand, part I: physical mechanism, constitutive description and numerical algorithm. Acta Geotechnica, 7(2), 69-113.
Toplam 60 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular İnşaat Mühendisliği
Bölüm Araştırma Makaleleri \ Research Articles
Yazarlar

Merve Akbaş 0000-0001-8466-2463

Ozan Subaşi 0000-0001-6931-0590

Zeynep Kaygusuz 0000-0002-2571-2309

Recep İyisan 0000-0002-0887-9983

Yayımlanma Tarihi 27 Mart 2023
Gönderilme Tarihi 13 Eylül 2022
Kabul Tarihi 27 Ekim 2022
Yayımlandığı Sayı Yıl 2023 Cilt: 11 Sayı: 1

Kaynak Göster

APA Akbaş, M., Subaşi, O., Kaygusuz, Z., İyisan, R. (2023). SIVILAŞMA KAYNAKLI OTURMALARIN AZALTILMASINDA ÜST DOLGU TABAKASININ ETKİSİ: BİR VAKA ANALİZİ. Mühendislik Bilimleri Ve Tasarım Dergisi, 11(1), 126-144. https://doi.org/10.21923/jesd.1174506