Araştırma Makalesi
BibTex RIS Kaynak Göster

INVESTIGATION OF PHYSICAL, MECHANICAL AND THERMAL PROPERTIES OF MINERAL ADMIXED AUTOCLAVED FOAM CONCRETE

Yıl 2024, Cilt: 12 Sayı: 3, 572 - 584, 26.09.2024
https://doi.org/10.21923/jesd.1480638

Öz

In this study, the aim was to develop a non-combustible, economical, and entirely domestically sourced and technology-based autoclaved foam concrete thermal insulation material. In autoclaved foam concrete (AFC) with a density of 300 kg/m3, which meets thermal insulation material standards, the density, capillary water absorption coefficient, compressive and flexural strengths, ultrasonic pulse velocity, dynamic modulus of elasticity, thermal conductivity, and the mineralogical properties of hydration products based on XRD of some silica-based mineral additives (fly ash, amorphous silica, and metakaolin) substituted at different ratios (5%, 10%, and 15%) for cement were investigated. Autoclaving improved the physico-mechanical properties of mineral-added foam concrete. Among the mineral additives, the highest strength values were obtained in the foam concrete with 5% metakaolin, while the lowest thermal conductivity and capillary water absorption values were obtained in the foam concrete with 5% fly ash. The study concluded that autoclaving is highly effective in producing a sustainable thermal insulation material in foam concrete.

Proje Numarası

FDK-2020-8130

Kaynakça

  • Abd Elrahman, M., Sikora, P., Chung, S. Y., Stephan, D. (2021). The Performance of Ultra-Lightweight Foamed Concrete Incorporating Nanosilica. Archives of Civil and Mechanical Engineering, 21(2), 1-16. https://doi.org/10.1007/s43452-021-00234-2
  • AKÜ DAL, (2022). Afyon Kocatepe University Natural Stone Laboratory, Afyon, Turkey.
  • Alnahhal, A. M., Alengaram, U. J., Yusoff, S., Darvish, P., Srinivas, K., Sumesh, M. (2022). Engineering Performance of Sustainable Geopolymer Foamed and Non-Foamed Concretes. Construction and Building Materials, 316, 125601. https://doi.org/10.1016/j.conbuildmat.2021.125601
  • Alnkaa, A., Yaprak, H., Memiş, S., Kaplan, G. (2018). Effect of Different Cure Conditions on the Shrinkage of Geopolymer Mortar. Int. J. Eng. Res. Dev., 14(10), 51-55.
  • Amran, Y. M., Farzadnia, N., Ali, A. A. (2015). Properties and Applications of Foamed Concrete; A Review. Construction and Building Materials, 101, 990-1005. https://doi.org/10.1016/j.conbuildmat.2015.10.112
  • ASTM C597-16. (2016). Standard Test Method for Pulse Velocity Through Concrete. ASTM International, West Conshohocken, PA 19428-2959 USA.
  • Awang, H., Mydin, M. A. O., Roslan, A. F. (2012). Mıcrostructural Investıgatıon of Lıghtweıght Foamed Concrete Incorporatıng Varıous Addıtıves. International Journal of Academic Research, 4(2).
  • Aydos Chemical Company. Kocaeli/Turkiye. http://www.aydos.com.tr /tr/urun-detay/aydos-lightcon-28 (accepted 04 November 2021).
  • Çimsa Company. Ankara/Turkiye. https://www.cimsa.com.tr /tr/urunhizmetler/cimento/gri-cimento/cimsa-cem-i-42-5-r-portland-cimento/i-104 (accepted 04 November 2021).
  • Davraz, M. & Gunduz, L. (2005). Engineering properties of amorphous silica as a new natural pozzolan for use in concrete. Cement and Concrete Research, 35(7), 1251-1261. https://doi.org/10.1016/j.cemconres.2004.11.016
  • Falliano, D., De Domenico, D., Ricciardi, G., Gugliandolo, E. (2018). Experimental Investigation on the Compressive Strength of Foamed Concrete: Effect of Curing Conditions, Cement Type, Foaming Agent and Dry Density. Construction and Building Materials, 165, 735-749. https://doi.org/10.1016/j.conbuildmat.2017.12.241
  • Falliano, D., Restuccia, L., Ferro, G. A. (2022). Increase the Fracture Energy of Foamed Concrete: Two Possible Solutions. Procedia Structural Integrity, 39, 229-235. https://doi.org/10.1016/j.prostr.2022.03.092
  • Gencel, O., Oguz, M., Gholampour, A., & Ozbakkaloglu, T. (2021). Recycling waste concretes as fine aggregate and fly ash as binder in production of thermal insulating foam concretes. Journal of Building Engineering, 38, 102232.
  • Gökçe, H. S., Hatungimana, D., Ramyar, K. (2019). Effect of Fly Ash and Silica Fume on Hardened Properties of Foam Concrete. Construction and Building Materials, 194, 1-11. https://doi.org/10.1016/j.conbuildmat.2018.11.036
  • Guglielmi, P. O., Silva, W. R. L., Repette, W. L., Hotza, D. (2010). Porosity and Mechanical Strength of an Autoclaved Clayey Cellular Concrete. Advances in Civil Engineering, 2010. https://doi.org/10.1155/2010/194102
  • He, J., Gao, Q., Song, X., Bu, X., He, J. (2019). Effect of Foaming Agent on Physical and Mechanical Properties of Alkali-Activated Slag Foamed Concrete. Construction and Building Materials, 226, 280-287. https://doi.org/10.1016/j.conbuildmat.2019.07.302
  • Işıldar, N. 2023. Silika esaslı katkıların otoklavlanmış köpük beton mühendislik özelliklerine etkilerinin araştırılması. Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi, 125s., Isparta.
  • Jalal, M. D., Tanveer, A., Jagdeesh, K., Ahmed, F. (2017). Foam Concrete. International Journal of Civil Engineering Research, 8(1), 1-14.
  • Jones, M. R., & McCarthy, A. (2006). Heat of hydration in foamed concrete: Effect of mix constituents and plastic density. Cement and concrete research, 36(6), 1032-1041. https://doi.org/10.1016/j.cemconres.2006.01.011
  • Kilincarslan, S., Davraz, M., & Isildar, N. (2023). Investigation of the effect of autoclaving on foam concrete properties. Journal of Radiation Research and Applied Sciences, 16(4), 100722.
  • Kim, H. S., Lee, S. H., Kim, B. (2017). Properties of Extrusion Concrete Panel Using Waste Concrete Powder. Applied Sciences, 7(9), 910. https://doi.org/10.3390/app7090910.
  • Mashkin, N., Bartenjeva, E., Mansurov, R. (2018). Naturally Cured Foamed Concrete with Improved Thermal Insulation Properties. In Matec Web of Conferences, 143, 02005.
  • https://doi.org/10.1051/matecconf/201814302005
  • Maslehuddin, M., Ibrahim, M., Shameem, M., Ali, M. R., Al-Mehthel, M. H. (2013). Effect of Curing Methods on Shrinkage and Corrosion Resistance of Concrete. Construction and Building Materials, 41, 634-641. https://doi.org/10.1016/j.conbuildmat.2012.12.064
  • Nambiar, E. K., Ramamurthy, K. (2009). Shrinkage Behavior of Foam Concrete. Journal of Materials in Civil Engineering, 21(11), 631-636. https://doi.org/10.1061/(ASCE)0899-1561(2009)21:11(631)
  • Papadopoulos, A. M. (2005). State of the art in thermal insulation materials and aims for future developments. Energy and buildings, 37(1), 77-86. https://doi.org/10.1016/j.enbuild.2004.05.006
  • Peng, Y., Yuan, X., Jiang, L., Yang, J., Liu, Z., Zhao, Y., Chen, H. (2022). The Fabricating Methods, Properties and Engineering Applications of Foamed Concrete with Polyurethane: a Review. International Journal of Environmental Science and Technology, 1-20. https://doi.org/10.1007/s13762-022-04115-w
  • Polat Mining Company. Aydın/Turkiye. https://www.polatmaden.com.tr/urun_detay.asp?kat =4&idx=26 (accepted 04 November 2021).
  • Raj, A., Sathyan, D., Mini, K. M. (2019). Physical and Functional Characteristics of Foam Concrete: a Review. Construction and Building Materials, 221, 787-799. https://doi.org/10.1016/j.conbuildmat.2019.06.052
  • Shi, J., Liu, B., He, Z., Liu, Y., Jiang, J., Xiong, T., Shi, J. (2021). A green ultra-lightweight chemically foamed concrete for building exterior: A Feasibility Study. Journal of Cleaner Production, 288, 125085. https://doi.org/10.1016/j.jclepro.2020.125085
  • S-Lab (2021). Standard Laboratory Management Inc., Kocaeli, Turkey.
  • TS EN 1015-18. (2004). Methods of test for mortar for masonry - Part 18: Determination of water absorption coefficient due to capillary action of hardened mortar, TSE, Ankara.
  • TS EN 12664 (2009). Thermal performance of building materials and products - Determination of thermal resistance by means of guarded hot plate and heat flow meter methods - Dry and moist products of medium and low thermal resistance, TSE, Ankara.
  • TS EN 1602. (2013). Thermal insulating products for building applications-Determination of apparent density, TSE, Ankara.
  • TS EN 196-1. (2016). Methods of testing cement - Part 1: Determination of strength, TSE, Ankara.
  • TS EN 196-6. (2020). Methods of testing cement - Part 6: Determination of fineness. TSE, Ankara.
  • Wang, T., Gao, X., Li, Y., & Liu, Y. (2024). An orthogonal experimental study on the influence of steam-curing on mechanical properties of foam concrete with fly ash. Case Studies in Construction Materials, 20, e02665.
  • Yuan, H., Ge, Z., Sun, R., Xu, X., Lu, Y., Ling, Y., Zhang, H. (2022). Drying Shrinkage, Durability and Microstructure of Foamed Concrete Containing High Volume Lime Mud-Fly Ash. Construction and Building Materials, 327, 126990. https://doi.org/10.1016/j.conbuildmat.2022.126990

MİNERAL KATKILI OTOKLAVLANMIŞ KÖPÜK BETONUN FİZİKSEL, MEKANİK VE TERMAL ÖZELLİKLERİNİN İNCELENMESİ

Yıl 2024, Cilt: 12 Sayı: 3, 572 - 584, 26.09.2024
https://doi.org/10.21923/jesd.1480638

Öz

Bu çalışmada, yanmaz, ekonomik ve tamamen yerli kaynaklara ve teknolojiye dayalı bir otoklavlanmış köpük beton ısı yalıtım malzemesi geliştirilmesi amaçlanmıştır. Isı yalıtım malzemesi standartlarını karşılayan 300 kg/m3 yoğunluklu otoklavlanmış köpük betonda (AFC) çimento ile farklı oranlarda (%5, 10 ve 15) ikame edilen silika esaslı bazı mineral katkıların (uçucu kül, amorf silika ve metakaolin) yoğunluk, kılcal su emme katsayısı, basınç ve eğilme dayanımları, ultrasonik darbe hızı ve dinamik elastisite modülü, ısı iletkenliği, XRD esaslı hidratasyon ürünlerinin mineralojik özellikleri incelenmiştir. Otoklavlama, mineral katkılı köpük betonun fiziko-mekanik özelliklerini iyileştirmiştir. Mineral katkılar arasında en yüksek dayanım değerleri %5 metakaolin katkılı köpük betonda elde edilirken, en düşük ısı iletkenliği ve kapiler su emme değerleri %5 uçucu kül katkılı köpük betonda elde edilmiştir. Çalışmada, otoklavlamanın sürdürülebilir ısı yalıtım malzemesi köpük beton elde edilmesinde oldukça etkili olduğu sonucuna varılmıştır.

Destekleyen Kurum

SULEYMAN DEMIREL UNIVERSITY

Proje Numarası

FDK-2020-8130

Teşekkür

We would like to thank Süleyman Demirel University Scientific Research Projects Management Unit for providing financial support to this study, which is a part of Nuri Işıldar's doctoral thesis, within the scope of the project numbered FDK-2020-8130.

Kaynakça

  • Abd Elrahman, M., Sikora, P., Chung, S. Y., Stephan, D. (2021). The Performance of Ultra-Lightweight Foamed Concrete Incorporating Nanosilica. Archives of Civil and Mechanical Engineering, 21(2), 1-16. https://doi.org/10.1007/s43452-021-00234-2
  • AKÜ DAL, (2022). Afyon Kocatepe University Natural Stone Laboratory, Afyon, Turkey.
  • Alnahhal, A. M., Alengaram, U. J., Yusoff, S., Darvish, P., Srinivas, K., Sumesh, M. (2022). Engineering Performance of Sustainable Geopolymer Foamed and Non-Foamed Concretes. Construction and Building Materials, 316, 125601. https://doi.org/10.1016/j.conbuildmat.2021.125601
  • Alnkaa, A., Yaprak, H., Memiş, S., Kaplan, G. (2018). Effect of Different Cure Conditions on the Shrinkage of Geopolymer Mortar. Int. J. Eng. Res. Dev., 14(10), 51-55.
  • Amran, Y. M., Farzadnia, N., Ali, A. A. (2015). Properties and Applications of Foamed Concrete; A Review. Construction and Building Materials, 101, 990-1005. https://doi.org/10.1016/j.conbuildmat.2015.10.112
  • ASTM C597-16. (2016). Standard Test Method for Pulse Velocity Through Concrete. ASTM International, West Conshohocken, PA 19428-2959 USA.
  • Awang, H., Mydin, M. A. O., Roslan, A. F. (2012). Mıcrostructural Investıgatıon of Lıghtweıght Foamed Concrete Incorporatıng Varıous Addıtıves. International Journal of Academic Research, 4(2).
  • Aydos Chemical Company. Kocaeli/Turkiye. http://www.aydos.com.tr /tr/urun-detay/aydos-lightcon-28 (accepted 04 November 2021).
  • Çimsa Company. Ankara/Turkiye. https://www.cimsa.com.tr /tr/urunhizmetler/cimento/gri-cimento/cimsa-cem-i-42-5-r-portland-cimento/i-104 (accepted 04 November 2021).
  • Davraz, M. & Gunduz, L. (2005). Engineering properties of amorphous silica as a new natural pozzolan for use in concrete. Cement and Concrete Research, 35(7), 1251-1261. https://doi.org/10.1016/j.cemconres.2004.11.016
  • Falliano, D., De Domenico, D., Ricciardi, G., Gugliandolo, E. (2018). Experimental Investigation on the Compressive Strength of Foamed Concrete: Effect of Curing Conditions, Cement Type, Foaming Agent and Dry Density. Construction and Building Materials, 165, 735-749. https://doi.org/10.1016/j.conbuildmat.2017.12.241
  • Falliano, D., Restuccia, L., Ferro, G. A. (2022). Increase the Fracture Energy of Foamed Concrete: Two Possible Solutions. Procedia Structural Integrity, 39, 229-235. https://doi.org/10.1016/j.prostr.2022.03.092
  • Gencel, O., Oguz, M., Gholampour, A., & Ozbakkaloglu, T. (2021). Recycling waste concretes as fine aggregate and fly ash as binder in production of thermal insulating foam concretes. Journal of Building Engineering, 38, 102232.
  • Gökçe, H. S., Hatungimana, D., Ramyar, K. (2019). Effect of Fly Ash and Silica Fume on Hardened Properties of Foam Concrete. Construction and Building Materials, 194, 1-11. https://doi.org/10.1016/j.conbuildmat.2018.11.036
  • Guglielmi, P. O., Silva, W. R. L., Repette, W. L., Hotza, D. (2010). Porosity and Mechanical Strength of an Autoclaved Clayey Cellular Concrete. Advances in Civil Engineering, 2010. https://doi.org/10.1155/2010/194102
  • He, J., Gao, Q., Song, X., Bu, X., He, J. (2019). Effect of Foaming Agent on Physical and Mechanical Properties of Alkali-Activated Slag Foamed Concrete. Construction and Building Materials, 226, 280-287. https://doi.org/10.1016/j.conbuildmat.2019.07.302
  • Işıldar, N. 2023. Silika esaslı katkıların otoklavlanmış köpük beton mühendislik özelliklerine etkilerinin araştırılması. Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi, 125s., Isparta.
  • Jalal, M. D., Tanveer, A., Jagdeesh, K., Ahmed, F. (2017). Foam Concrete. International Journal of Civil Engineering Research, 8(1), 1-14.
  • Jones, M. R., & McCarthy, A. (2006). Heat of hydration in foamed concrete: Effect of mix constituents and plastic density. Cement and concrete research, 36(6), 1032-1041. https://doi.org/10.1016/j.cemconres.2006.01.011
  • Kilincarslan, S., Davraz, M., & Isildar, N. (2023). Investigation of the effect of autoclaving on foam concrete properties. Journal of Radiation Research and Applied Sciences, 16(4), 100722.
  • Kim, H. S., Lee, S. H., Kim, B. (2017). Properties of Extrusion Concrete Panel Using Waste Concrete Powder. Applied Sciences, 7(9), 910. https://doi.org/10.3390/app7090910.
  • Mashkin, N., Bartenjeva, E., Mansurov, R. (2018). Naturally Cured Foamed Concrete with Improved Thermal Insulation Properties. In Matec Web of Conferences, 143, 02005.
  • https://doi.org/10.1051/matecconf/201814302005
  • Maslehuddin, M., Ibrahim, M., Shameem, M., Ali, M. R., Al-Mehthel, M. H. (2013). Effect of Curing Methods on Shrinkage and Corrosion Resistance of Concrete. Construction and Building Materials, 41, 634-641. https://doi.org/10.1016/j.conbuildmat.2012.12.064
  • Nambiar, E. K., Ramamurthy, K. (2009). Shrinkage Behavior of Foam Concrete. Journal of Materials in Civil Engineering, 21(11), 631-636. https://doi.org/10.1061/(ASCE)0899-1561(2009)21:11(631)
  • Papadopoulos, A. M. (2005). State of the art in thermal insulation materials and aims for future developments. Energy and buildings, 37(1), 77-86. https://doi.org/10.1016/j.enbuild.2004.05.006
  • Peng, Y., Yuan, X., Jiang, L., Yang, J., Liu, Z., Zhao, Y., Chen, H. (2022). The Fabricating Methods, Properties and Engineering Applications of Foamed Concrete with Polyurethane: a Review. International Journal of Environmental Science and Technology, 1-20. https://doi.org/10.1007/s13762-022-04115-w
  • Polat Mining Company. Aydın/Turkiye. https://www.polatmaden.com.tr/urun_detay.asp?kat =4&idx=26 (accepted 04 November 2021).
  • Raj, A., Sathyan, D., Mini, K. M. (2019). Physical and Functional Characteristics of Foam Concrete: a Review. Construction and Building Materials, 221, 787-799. https://doi.org/10.1016/j.conbuildmat.2019.06.052
  • Shi, J., Liu, B., He, Z., Liu, Y., Jiang, J., Xiong, T., Shi, J. (2021). A green ultra-lightweight chemically foamed concrete for building exterior: A Feasibility Study. Journal of Cleaner Production, 288, 125085. https://doi.org/10.1016/j.jclepro.2020.125085
  • S-Lab (2021). Standard Laboratory Management Inc., Kocaeli, Turkey.
  • TS EN 1015-18. (2004). Methods of test for mortar for masonry - Part 18: Determination of water absorption coefficient due to capillary action of hardened mortar, TSE, Ankara.
  • TS EN 12664 (2009). Thermal performance of building materials and products - Determination of thermal resistance by means of guarded hot plate and heat flow meter methods - Dry and moist products of medium and low thermal resistance, TSE, Ankara.
  • TS EN 1602. (2013). Thermal insulating products for building applications-Determination of apparent density, TSE, Ankara.
  • TS EN 196-1. (2016). Methods of testing cement - Part 1: Determination of strength, TSE, Ankara.
  • TS EN 196-6. (2020). Methods of testing cement - Part 6: Determination of fineness. TSE, Ankara.
  • Wang, T., Gao, X., Li, Y., & Liu, Y. (2024). An orthogonal experimental study on the influence of steam-curing on mechanical properties of foam concrete with fly ash. Case Studies in Construction Materials, 20, e02665.
  • Yuan, H., Ge, Z., Sun, R., Xu, X., Lu, Y., Ling, Y., Zhang, H. (2022). Drying Shrinkage, Durability and Microstructure of Foamed Concrete Containing High Volume Lime Mud-Fly Ash. Construction and Building Materials, 327, 126990. https://doi.org/10.1016/j.conbuildmat.2022.126990
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Yapı Malzemeleri
Bölüm Araştırma Makaleleri \ Research Articles
Yazarlar

Nuri Işıldar 0000-0001-6639-3650

Şemsettin Kılınçarslan 0000-0001-8253-9357

Metin Davraz 0000-0002-6069-7802

Proje Numarası FDK-2020-8130
Yayımlanma Tarihi 26 Eylül 2024
Gönderilme Tarihi 8 Mayıs 2024
Kabul Tarihi 31 Ağustos 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 12 Sayı: 3

Kaynak Göster

APA Işıldar, N., Kılınçarslan, Ş., & Davraz, M. (2024). INVESTIGATION OF PHYSICAL, MECHANICAL AND THERMAL PROPERTIES OF MINERAL ADMIXED AUTOCLAVED FOAM CONCRETE. Mühendislik Bilimleri Ve Tasarım Dergisi, 12(3), 572-584. https://doi.org/10.21923/jesd.1480638