Derleme
BibTex RIS Kaynak Göster

KENEVİR VE SAĞLIK ALANINDA KULLANIMI

Yıl 2020, Cilt: 44 Sayı: 1, 112 - 136, 31.01.2020
https://doi.org/10.33483/jfpau.559665

Öz

Amaç: Kenevir, binlerce yıldır özellikle liflerinden ve
tohumları olmak üzere tüm kısımlarından çeşitli amaçlarla (yapı-tekstil
malzemesi, kağıt, besin, insan ve hayvan sağlığında ilaç vb.) yararlanılan, ilk
kültürü yapılan bitkilerdendir. 1930’lu yıllarda öforik amaçla kullanımının
suistimal edilmesi ve ticari kaygılardan dolayı uzun yıllar yasaklı/kısıtlı
bitki olarak kalan kenevir, yeni nesil kullanım alanları ve özellikle insan
sağlığıyla ilgili etkilerinin bilimsel araştırmalarla kanıtlanmasıyla son
yıllarda tekrar ön plana çıkmıştır. Günümüzde pek çok ülke kenevirle ilgili
yasaların güncellenmesiyle kenevirin hem endüstriyel hem de medikal
etkilerinden faydalanmaya başlamıştır. Ülkemizde ise son yıllarda endüstriyel
kenevir üretimi ve kullanımı ile ilgili birtakım gelişmeler yaşanmaktadır.                                 

Gereç ve Yöntem: Bu çalışmada, kenevirin botanik özellikleri, tarihçesi,
fitokimyasal içeriği, terapötik kullanımları ve sağlık alanında yapılan
bilimsel çalışmalar derlenmiştir.










Sonuç ve Tartışma: Kenevir bitkisinin botanik özellikleri, genel kullanım alanları
ile birlikte geçmişten günümüze sağlık alanında kenevirden elde edilen
kullanımda olan ilaçlardan örnekler verilerek fitokimyasal içeriği ve etkileri
detaylı olarak verilmiştir. Kenevir tohumu yağı ve kökündeki aktif bileşenlere
de değinilmiş, kenevirin terapötik kullanımı tartışılmıştır. Hem endüstriyel
hem sağlık alanında kullanılan fakat üretimi ve kullanımı ülkemizde kısıtlı
olan kenevir ile ilgili yasaların bilimsel destekli olarak yeniden gözden
geçirilmesi ülke ekonomisi ve sağlık sektörü için oldukça önemli sonuçlar
sağlayacaktır.

Kaynakça

  • 1. Schultes, R.E., et al., Cannabis: an example of taxonomic neglect. Botanical Museum Leaflets, Harvard University, 1974. 23(9): p. 337-367.2. Anderson, L.C., Leaf variation among Cannabis species from a controlled garden. Botanical Museum Leaflets, Harvard University, 1980. 28(1): p. 61-69.3. S., G., Cannabis sativa L. Bitkisinin Morfolojisi ve Anatomisi Üzerine Bir Araştırma, in Fen Bilimleri Enstitüsü, Biyoloji Bölümü, Botanik Ana Bilim Dalı. 2009, Ege Üniversitesi 4. Aytaç S., A.Ş.F., Ayan A.K. , Endüstriyel Tip Kenevir (Cannabis sativa L.) Yetiştiriciliği. Karadeniz’in Lif Bitkileri (Keten- Kendir- Isırgan) Çalıştayı, 2017: p. 27-35.5. Hao, X.M., et al. Study on antibacterial mechanism of hemp fiber. in Advanced Materials Research. 2014. Trans Tech Publ.6. Khan, B.A., et al., Antibacterial properties of hemp hurd powder against E. coli. Journal of Applied Polymer Science, 2015. 132(10).7. Cassano, R., et al., Hemp fiber (Cannabis sativa L.) derivatives with antibacterial and chelating properties. Cellulose, 2013. 20(1): p. 547-557.8. Gu, L., Surgical sewing free zipper made of antibiotic material hemp fiber. CN Patent Y, 2006. 2829641.9. Aytaç, S., Ş. Arslanoglu, and A. Ayan, Suçlu Olarak Bilinen Bitki: Kenevir. 2018. p. 550.10. Touw, M., The religious and medicinal uses of Cannabis in China, India and Tibet. Journal of psychoactive drugs, 1981. 13(1): p. 23-34.11. Abel, E., Marijuana the first twelve thousand years Plenum Press. New York, New York, USA, 1980.12. Epstein, H.A., A natural approach to soothing atopic skin. Recommend a stretch marks therapy that lives up to its promises., 2010: p. 95.13. Butrica, J.L., The medical use of cannabis among the Greeks and Romans. Journal of Cannabis Therapeutics, 2002. 2(2): p. 51-70.14. A., I.S., Kanun fi at-Tibb (Canon of medicine) [in Arabic]. 1030, Baku, Azerbaijan: The Institute of Manuscripts of Azerbaijan National Academy of Sciences.15. Ulugöl, A., Kannabis Bitkisi ve Kannabinoidlere Giriş. Turkiye Klinikleri Journal of Pharmacology Special Topics, 2018. 6(1): p. 1-5.16. Ryz, N.R., D.J. Remillard, and E.B. Russo, Cannabis roots: a traditional therapy with future potential for treating inflammation and pain. Cannabis and cannabinoid research, 2017. 2(1): p. 210-216.17. Lee, M.A., Smoke signals: A social history of Marijuana-Medical, Recreational and Scientific. 2012: Simon and Schuster.18. O'Shaughnessy-Kirwan, A., et al., Constraint of gene expression by the chromatin remodelling protein CHD4 facilitates lineage specification. Development, 2015. 142(15): p. 2586-97.19. Gaoni, Y. and R. Mechoulam, Isolation, structure, and partial synthesis of an active constituent of hashish. Journal of the American chemical society, 1964. 86(8): p. 1646-1647.20. Devane, W.A., et al., Determination and characterization of a cannabinoid receptor in rat brain. Molecular pharmacology, 1988. 34(5): p. 605-613.21. Munro, S., K.L. Thomas, and M. Abu-Shaar, Molecular characterization of a peripheral receptor for cannabinoids. Nature, 1993. 365(6441): p. 61.22. Elias R., R.M., Istasy M., Mekhaiel D., Sidhu G., Warren D., Cernovsky Z., Sadek G. , Knowledge of Cannabinoids among Patients, Physicians, and Pharmacists. Archives of Psychiatry and Behavioral Sciences, 2019. 2(1): p. 25-28.23. Ulugöl, A., Kannabinoidlerin Klinikte Kullanılışı ve Terapötik Hedefler. Turkiye Klinikleri Journal of Pharmacology Special Topics, 2018. 6(1): p. 42-50.24. Pertwee, R., The diverse CB1 and CB2 receptor pharmacology of three plant cannabinoids: Δ9‐tetrahydrocannabinol, cannabidiol and Δ9‐tetrahydrocannabivarin. British journal of pharmacology, 2008. 153(2): p. 199-215.25. ElSohly, M. and W. Gul, Constituents of cannabis sativa. Handbook of cannabis, 2014. 3: p. 1093.26. Fairbairn, J., The trichomes and glands of Cannabis sativa L. Bull. Narc, 1972. 23: p. 29-33.27. Dayanandan, P. and P.B. Kaufman, Trichomes of Cannabis sativa L.(Cannabaceae). American Journal of Botany, 1976. 63(5): p. 578-591.28. Haney, A. and B.B. Kutscheid, Quantitative variation in the chemical constituents of marihuana from stands of naturalizedCannabis sativa L. in East-Central Illinois. Economic Botany, 1973. 27(2): p. 193-203.29. Brenneisen, R., Psychotrope Drogen. II. Bestimmung der Cannabinoide in Cannabis sativa L. und in Cannabisprodukten mittels Hochdruckflüssigkeitschromatographie (HPLC). Pharm Acta Helv, 1984. 59(9-10): p. 247-259.30. Izzo, A.A., et al., Non-psychotropic plant cannabinoids: new therapeutic opportunities from an ancient herb. Trends in pharmacological sciences, 2009. 30(10): p. 515-527.31. Brierley, D.I., et al., A cannabigerol-rich Cannabis sativa extract, devoid of [INCREMENT] 9-tetrahydrocannabinol, elicits hyperphagia in rats. Behavioural pharmacology, 2017. 28(4): p. 280-284.32. Smeriglio, A., et al., Inhibition of aldose reductase activity by Cannabis sativa chemotypes extracts with high content of cannabidiol or cannabigerol. Fitoterapia, 2018. 127: p. 101-108.33. Russo, E.B., et al., Phytochemical and genetic analyses of ancient cannabis from Central Asia. Journal of experimental botany, 2008. 59(15): p. 4171-4182.34. De Petrocellis, L., et al., Plant-derived cannabinoids modulate the activity of transient receptor potential channels of ankyrin type-1 and melastatin type-8. Journal of Pharmacology and Experimental Therapeutics, 2008. 325(3): p. 1007-1015.35. Romano, B., et al., The cannabinoid TRPA1 agonist cannabichromene inhibits nitric oxide production in macrophages and ameliorates murine colitis. British journal of pharmacology, 2013. 169(1): p. 213-229.36. Casajuana Kögel, C., et al., Psychoactive constituents of cannabis and their clinical implications: a systematic review. Adicciones, 2018. 30(2).37. Consroe, P., R. Sandyk, and S.R. Snider, Open label evaluation of cannabidiol in dystonic movement disorders. International Journal of Neuroscience, 1986. 30(4): p. 277-282.38. Laun, A.S., et al., GPR3, GPR6, and GPR12 as novel molecular targets: their biological functions and interaction with cannabidiol. Acta Pharmacologica Sinica, 2018: p. 1.39. Jakubovski, E. and K. Müller-Vahl, Speechlessness in Gilles de la Tourette Syndrome: Cannabis-based medicines improve severe vocal blocking tics in two patients. International journal of molecular sciences, 2017. 18(8): p. 1739.40. Abi-Jaoude, E., et al., Preliminary evidence on cannabis effectiveness and tolerability for adults with Tourette syndrome. The Journal of neuropsychiatry and clinical neurosciences, 2017. 29(4): p. 391-400.41. Suliman, N.A., et al., Delta-9-Tetrahydrocannabinol (∆ 9-THC) Induce Neurogenesis and Improve Cognitive Performances of Male Sprague Dawley Rats. Neurotoxicity research, 2018. 33(2): p. 402-411.42. Currais, A., et al., Amyloid proteotoxicity initiates an inflammatory response blocked by cannabinoids. npj Aging and Mechanisms of Disease, 2016. 2: p. 16012.43. Dennis, I., B.J. Whalley, and G.J. Stephens, Effects of Δ9‐tetrahydrocannabivarin on [35S] GTPγS binding in mouse brain cerebellum and piriform cortex membranes. British journal of pharmacology, 2008. 154(6): p. 1349-1358.44. Bolognini, D., et al., The plant cannabinoid Δ9‐tetrahydrocannabivarin can decrease signs of inflammation and inflammatory pain in mice. British journal of pharmacology, 2010. 160(3): p. 677-687.45. Romano, B., et al., Pure Δ9-tetrahydrocannabivarin and a Cannabis sativa extract with high content in Δ9-tetrahydrocannabivarin inhibit nitrite production in murine peritoneal macrophages. Pharmacological research, 2016. 113: p. 199-208.46. Booth, J.K., J.E. Page, and J. Bohlmann, Terpene synthases from Cannabis sativa. Plos one, 2017. 12(3): p. e0173911.47. Farag, S. and O. Kayser, The Cannabis Plant: Botanical Aspects, in Handbook of Cannabis and Related Pathologies. 2017, Elsevier. p. 3-12.48. Bai, J., et al., Protective effect of D-limonene against oxidative stress-induced cell damage in human lens epithelial cells via the p38 pathway. Oxidative Medicine and Cellular Longevity, 2016. 2016.49. Yun, J., Limonene inhibits methamphetamine-induced locomotor activity via regulation of 5-HT neuronal function and dopamine release. Phytomedicine, 2014. 21(6): p. 883-887.50. d'Alessio, P.A., J.-F. Bisson, and M.C. Béné, Anti-stress effects of d-limonene and its metabolite perillyl alcohol. Rejuvenation research, 2014. 17(2): p. 145-149.51. Jia, S.-S., et al., Induction of apoptosis by D-limonene is mediated by inactivation of Akt in LS174T human colon cancer cells. Oncology reports, 2013. 29(1): p. 349-354.52. Wilkins, S.J., Method for Treating Gastrointestinal Disorders, U.S. Patents, Editor. 1999.53. Lima, T., et al., Analgesic-like activity of essential oil constituents: an update. International journal of molecular sciences, 2017. 18(12): p. 2392.54. Russo, E.B., Taming THC: potential cannabis synergy and phytocannabinoid‐terpenoid entourage effects. British journal of pharmacology, 2011. 163(7): p. 1344-1364.55. Bonini, S.A., et al., Cannabis sativa: A comprehensive ethnopharmacological review of a medicinal plant with a long history. Journal of ethnopharmacology, 2018.56. Kim, D.-S., et al., Alpha-pinene exhibits anti-inflammatory activity through the suppression of MAPKs and the NF-κB pathway in mouse peritoneal macrophages. The American journal of Chinese medicine, 2015. 43(04): p. 731-742.57. Owokotomo, I., et al., In-vitro anti-cholinesterase activity of essential oil from four tropical medicinal plants. Toxicology reports, 2015. 2: p. 850-857.58. Souto-Maior, F.N., et al., Antinociceptive and anticonvulsant effects of the monoterpene linalool oxide. Pharmaceutical biology, 2017. 55(1): p. 63-67.59. 5Fidyt, K., et al., β‐caryophyllene and β‐caryophyllene oxide—natural compounds of anticancer and analgesic properties. Cancer medicine, 2016. 5(10): p. 3007-3017.60. Yang, D., et al., Use of caryophyllene oxide as an antifungal agent in an in vitro experimental model of onychomycosis. Mycopathologia, 2000. 148(2): p. 79-82.61. Opdyke, D., Caryophyllene oxide. Food Chem Toxicol, 1983. 21: p. 661-662.62. Bang, M.-H., et al., Phytol, SSADH inhibitory diterpenoid ofLactuca sativa. Archives of pharmacal research, 2002. 25(5): p. 643-646.63. Deferne, J.-L. and D.W. Pate, Hemp seed oil: A source of valuable essential fatty acids. Journal of the International Hemp Association, 1996. 3(1): p. 4-7.64. Callaway, J., T. Tennilä, and D. Pate, Occurrence of “omega-3” stearidonic acid (cis-6, 9, 12, 15-octadecatetraenoic acid) in hemp (Cannabis sativa L.) seed. Journal of the International Hemp Association, 1996. 3(2): p. 61-64.65. Erasmus, U., Fats that heal, fats that kill: the complete guide to fats, oils, cholesterol, and human health. 1993: Book Publishing Company.66. Tambe, Y., et al., Gastric cytoprotection of the non-steroidal anti-inflammatory sesquiterpene, β-caryophyllene. Planta medica, 1996. 62(05): p. 469-470.67. Malini, T. and G. Vanithakumari, Rat toxicity studies with β-sitosterol. Journal of Ethnopharmacology, 1990. 28(2): p. 221-234.68. Leizer, C., et al., The composition of hemp seed oil and its potential as an important source of nutrition. Journal of Nutraceuticals, functional & medical foods, 2000. 2(4): p. 35-53.69. Antonisamy, P., et al., Anti-diarrhoeal activity of friedelin isolated from Azima tetracantha lam. in wistar rats. South Indian Journal of Biological Sciences, 2015. 1(1): p. 34-37.70. Aswar, U.M., et al., Estrogenic activity of friedelin rich fraction (IND-HE) separated from Cissus quadrangularis and its effect on female sexual function. Pharmacognosy research, 2010. 2(3): p. 138.71. Sunil, C., et al., Antioxidant, free radical scavenging and liver protective effects of friedelin isolated from Azima tetracantha Lam. leaves. Food chemistry, 2013. 139(1-4): p. 860-865.72. Slatkin, D.J., et al., Chemical constituents of Cannabis sativa L. root. Journal of pharmaceutical sciences, 1971. 60(12): p. 1891-1892.73. Aso, E. and I. Ferrer, CB2 cannabinoid receptor as potential target against Alzheimer's disease. Frontiers in neuroscience, 2016. 10: p. 243.74. Fernández‐Ruiz, J., The biomedical challenge of neurodegenerative disorders: an opportunity for cannabinoid‐based therapies to improve on the poor current therapeutic outcomes. British journal of pharmacology, 2018.75. Patton, G.C., et al., Cannabis use and mental health in young people: cohort study. Bmj, 2002. 325(7374): p. 1195-1198.76. Aso Pérez, E., et al., CB2 cannabinoid receptor agonist ameliorates Alzheimer-like phenotype in AβPP/PS1 mice. 2013.77. Walther, S., et al., Delta-9-tetrahydrocannabinol for nighttime agitation in severe dementia. Psychopharmacology, 2006. 185(4): p. 524-528.78. Whiting, P.F., et al., Cannabinoids for medical use: a systematic review and meta-analysis. Jama, 2015. 313(24): p. 2456-2473.79. Bergamaschi, M.M., et al., Cannabidiol reduces the anxiety induced by simulated public speaking in treatment-naive social phobia patients. Neuropsychopharmacology, 2011. 36(6): p. 1219.80. Lim, K., Y.M. See, and J. Lee, A systematic review of the effectiveness of medical cannabis for psychiatric, movement and neurodegenerative disorders. Clinical Psychopharmacology and Neuroscience, 2017. 15(4): p. 301.81. Scherma, M., et al., Cannabinoid CB1/CB2 receptor agonists attenuate hyperactivity and body weight loss in a rat model of activity‐based anorexia. British journal of pharmacology, 2017. 174(16): p. 2682-2695.82. Koch, M., Cannabinoid receptor signaling in central regulation of feeding behavior: A mini-review. Frontiers in neuroscience, 2017. 11: p. 293.83. Andries, A., et al., Dronabinol in severe, enduring anorexia nervosa: a randomized controlled trial. International Journal of Eating Disorders, 2014. 47(1): p. 18-23.84. Weiss, L., et al., Cannabidiol lowers incidence of diabetes in non-obese diabetic mice. Autoimmunity, 2006. 39(2): p. 143-151.85. Comelli, F., et al., Antihyperalgesic effect of a Cannabis sativa extract in a rat model of neuropathic pain: mechanisms involved. Phytotherapy research, 2008. 22(8): p. 1017-1024.86. Yilmaz, H.R., et al., Protective effect of caffeic acid phenethyl ester (CAPE) on lipid peroxidation and antioxidant enzymes in diabetic rat liver. Journal of Biochemical and Molecular Toxicology, 2004. 18(4): p. 234-238.87. Hampson, A., et al., Cannabidiol and (−) Δ9-tetrahydrocannabinol are neuroprotective antioxidants. Proceedings of the National Academy of Sciences, 1998. 95(14): p. 8268-8273.88. Fusar-Poli, P., et al., O’Carro l C, Atakan Z, Zuardi AW, McGuire PK. Distinct effects o f {delta} 9-tetrahydrocannabinol and cannabidiol on neura l activation during emotional processing. Arch Gen Psychiatry, 2009. 66(1): p. 95-105.89. Aran, A., H. Cassuto, and A. Lubotzky, Cannabidiol Based Medical Cannabis in Children with Autism-a Retrospective Feasibility Study (P3. 318). 2018, AAN Enterprises.90. Ilgen, M.A., et al., Characteristics of adults seeking medical marijuana certification. Drug and alcohol dependence, 2013. 132(3): p. 654-659.91. Couch, D.G., et al., The use of cannabinoids in colitis: a systematic review and meta-analysis. Inflammatory bowel diseases, 2018. 24(4): p. 680-697.92. Naftali, T., et al., Cannabis for inflammatory bowel disease. Digestive Diseases, 2014. 32(4): p. 468-474.93. Pagano, E., et al., An orally active Cannabis extract with high content in cannabidiol attenuates chemically-induced intestinal inflammation and hypermotility in the mouse. Frontiers in pharmacology, 2016. 7: p. 341.94. Hasenoehrl, C., M. Storr, and R. Schicho, Cannabinoids for treating inflammatory bowel diseases: where are we and where do we go? Expert review of gastroenterology & hepatology, 2017. 11(4): p. 329-337.95. Nallathambi, R., et al., Anti-inflammatory activity in colon models is derived from Δ9-tetrahydrocannabinolic acid that interacts with additional compounds in Cannabis extracts. Cannabis and cannabinoid research, 2017. 2(1): p. 167-182.96. Soelberg Sorensen, P., Safety concerns and risk management of multiple sclerosis therapies. Acta Neurologica Scandinavica, 2017. 136(3): p. 168-186.97. Keating, G.M., Delta-9-tetrahydrocannabinol/cannabidiol oromucosal spray (Sativex®): a review in multiple sclerosis-related spasticity. Drugs, 2017. 77(5): p. 563-574.98. Robson, P., Therapeutic potential of cannabinoid medicines. Drug testing and analysis, 2014. 6(1-2): p. 24-30.99. Leweke, F., et al., Cannabidiol enhances anandamide signaling and alleviates psychotic symptoms of schizophrenia. Translational psychiatry, 2012. 2(3): p. e94.100. Ramar, K., et al., Medical cannabis and the treatment of obstructive sleep apnea: an American Academy of Sleep Medicine position statement. Journal of Clinical Sleep Medicine, 2018. 14(04): p. 679-681.101. Calik, M.W. and D.W. Carley, Effects of cannabinoid agonists and antagonists on sleep and breathing in Sprague-Dawley rats. Sleep, 2017. 40(9).102. Babson, K.A., J. Sottile, and D. Morabito, Cannabis, cannabinoids, and sleep: a review of the literature. Current psychiatry reports, 2017. 19(4): p. 23.

HEMP AND ITS USE IN HEALTH

Yıl 2020, Cilt: 44 Sayı: 1, 112 - 136, 31.01.2020
https://doi.org/10.33483/jfpau.559665

Öz

Objective: Hemp is one of the first
cultivated plants that have been used for thousands of years, specifically on
behalf of its fibers and seeds, for various purposes (building-textile
material, paper, nutrients, human and animal health). In the 1930s, since the
abuse of the euphoric use for abstinence, hemp was banned/restricted and
remained restricted for many years, hemp has emerged once again in recent years
with the usage of the plant in new generation areas and in particular the
impacts of human health. Nowadays, many countries have begun to benefit from
the both industrial and medical effects of hemp by updating the laws related to
hemp. In our country, there have been some developments regarding the
production and use of industrial cannabis in recent years.  

Material and Method:
In this study, the botanical characteristics, history, phytochemical content,
therapeutic uses of hemp and scientific studies in the field of health were
reviewed.










Result and Discussion:
The botanical properties of cannabis plants, general usage areas as well as
phytochemical content and its utilizations in health from past to the present
are given in detail. Cannabis seed oil and active ingredients in its roots are
also mentioned and therapeutic use of cannabis was discussed. A review of the
cannabis laws with the support of scientific revelations, which are limited
production and usage both in industrial and health fields, will provide
significant results for the country's economy and health sector.

Kaynakça

  • 1. Schultes, R.E., et al., Cannabis: an example of taxonomic neglect. Botanical Museum Leaflets, Harvard University, 1974. 23(9): p. 337-367.2. Anderson, L.C., Leaf variation among Cannabis species from a controlled garden. Botanical Museum Leaflets, Harvard University, 1980. 28(1): p. 61-69.3. S., G., Cannabis sativa L. Bitkisinin Morfolojisi ve Anatomisi Üzerine Bir Araştırma, in Fen Bilimleri Enstitüsü, Biyoloji Bölümü, Botanik Ana Bilim Dalı. 2009, Ege Üniversitesi 4. Aytaç S., A.Ş.F., Ayan A.K. , Endüstriyel Tip Kenevir (Cannabis sativa L.) Yetiştiriciliği. Karadeniz’in Lif Bitkileri (Keten- Kendir- Isırgan) Çalıştayı, 2017: p. 27-35.5. Hao, X.M., et al. Study on antibacterial mechanism of hemp fiber. in Advanced Materials Research. 2014. Trans Tech Publ.6. Khan, B.A., et al., Antibacterial properties of hemp hurd powder against E. coli. Journal of Applied Polymer Science, 2015. 132(10).7. Cassano, R., et al., Hemp fiber (Cannabis sativa L.) derivatives with antibacterial and chelating properties. Cellulose, 2013. 20(1): p. 547-557.8. Gu, L., Surgical sewing free zipper made of antibiotic material hemp fiber. CN Patent Y, 2006. 2829641.9. Aytaç, S., Ş. Arslanoglu, and A. Ayan, Suçlu Olarak Bilinen Bitki: Kenevir. 2018. p. 550.10. Touw, M., The religious and medicinal uses of Cannabis in China, India and Tibet. Journal of psychoactive drugs, 1981. 13(1): p. 23-34.11. Abel, E., Marijuana the first twelve thousand years Plenum Press. New York, New York, USA, 1980.12. Epstein, H.A., A natural approach to soothing atopic skin. Recommend a stretch marks therapy that lives up to its promises., 2010: p. 95.13. Butrica, J.L., The medical use of cannabis among the Greeks and Romans. Journal of Cannabis Therapeutics, 2002. 2(2): p. 51-70.14. A., I.S., Kanun fi at-Tibb (Canon of medicine) [in Arabic]. 1030, Baku, Azerbaijan: The Institute of Manuscripts of Azerbaijan National Academy of Sciences.15. Ulugöl, A., Kannabis Bitkisi ve Kannabinoidlere Giriş. Turkiye Klinikleri Journal of Pharmacology Special Topics, 2018. 6(1): p. 1-5.16. Ryz, N.R., D.J. Remillard, and E.B. Russo, Cannabis roots: a traditional therapy with future potential for treating inflammation and pain. Cannabis and cannabinoid research, 2017. 2(1): p. 210-216.17. Lee, M.A., Smoke signals: A social history of Marijuana-Medical, Recreational and Scientific. 2012: Simon and Schuster.18. O'Shaughnessy-Kirwan, A., et al., Constraint of gene expression by the chromatin remodelling protein CHD4 facilitates lineage specification. Development, 2015. 142(15): p. 2586-97.19. Gaoni, Y. and R. Mechoulam, Isolation, structure, and partial synthesis of an active constituent of hashish. Journal of the American chemical society, 1964. 86(8): p. 1646-1647.20. Devane, W.A., et al., Determination and characterization of a cannabinoid receptor in rat brain. Molecular pharmacology, 1988. 34(5): p. 605-613.21. Munro, S., K.L. Thomas, and M. Abu-Shaar, Molecular characterization of a peripheral receptor for cannabinoids. Nature, 1993. 365(6441): p. 61.22. Elias R., R.M., Istasy M., Mekhaiel D., Sidhu G., Warren D., Cernovsky Z., Sadek G. , Knowledge of Cannabinoids among Patients, Physicians, and Pharmacists. Archives of Psychiatry and Behavioral Sciences, 2019. 2(1): p. 25-28.23. Ulugöl, A., Kannabinoidlerin Klinikte Kullanılışı ve Terapötik Hedefler. Turkiye Klinikleri Journal of Pharmacology Special Topics, 2018. 6(1): p. 42-50.24. Pertwee, R., The diverse CB1 and CB2 receptor pharmacology of three plant cannabinoids: Δ9‐tetrahydrocannabinol, cannabidiol and Δ9‐tetrahydrocannabivarin. British journal of pharmacology, 2008. 153(2): p. 199-215.25. ElSohly, M. and W. Gul, Constituents of cannabis sativa. Handbook of cannabis, 2014. 3: p. 1093.26. Fairbairn, J., The trichomes and glands of Cannabis sativa L. Bull. Narc, 1972. 23: p. 29-33.27. Dayanandan, P. and P.B. Kaufman, Trichomes of Cannabis sativa L.(Cannabaceae). American Journal of Botany, 1976. 63(5): p. 578-591.28. Haney, A. and B.B. Kutscheid, Quantitative variation in the chemical constituents of marihuana from stands of naturalizedCannabis sativa L. in East-Central Illinois. Economic Botany, 1973. 27(2): p. 193-203.29. Brenneisen, R., Psychotrope Drogen. II. Bestimmung der Cannabinoide in Cannabis sativa L. und in Cannabisprodukten mittels Hochdruckflüssigkeitschromatographie (HPLC). Pharm Acta Helv, 1984. 59(9-10): p. 247-259.30. Izzo, A.A., et al., Non-psychotropic plant cannabinoids: new therapeutic opportunities from an ancient herb. Trends in pharmacological sciences, 2009. 30(10): p. 515-527.31. Brierley, D.I., et al., A cannabigerol-rich Cannabis sativa extract, devoid of [INCREMENT] 9-tetrahydrocannabinol, elicits hyperphagia in rats. Behavioural pharmacology, 2017. 28(4): p. 280-284.32. Smeriglio, A., et al., Inhibition of aldose reductase activity by Cannabis sativa chemotypes extracts with high content of cannabidiol or cannabigerol. Fitoterapia, 2018. 127: p. 101-108.33. Russo, E.B., et al., Phytochemical and genetic analyses of ancient cannabis from Central Asia. Journal of experimental botany, 2008. 59(15): p. 4171-4182.34. De Petrocellis, L., et al., Plant-derived cannabinoids modulate the activity of transient receptor potential channels of ankyrin type-1 and melastatin type-8. Journal of Pharmacology and Experimental Therapeutics, 2008. 325(3): p. 1007-1015.35. Romano, B., et al., The cannabinoid TRPA1 agonist cannabichromene inhibits nitric oxide production in macrophages and ameliorates murine colitis. British journal of pharmacology, 2013. 169(1): p. 213-229.36. Casajuana Kögel, C., et al., Psychoactive constituents of cannabis and their clinical implications: a systematic review. Adicciones, 2018. 30(2).37. Consroe, P., R. Sandyk, and S.R. Snider, Open label evaluation of cannabidiol in dystonic movement disorders. International Journal of Neuroscience, 1986. 30(4): p. 277-282.38. Laun, A.S., et al., GPR3, GPR6, and GPR12 as novel molecular targets: their biological functions and interaction with cannabidiol. Acta Pharmacologica Sinica, 2018: p. 1.39. Jakubovski, E. and K. Müller-Vahl, Speechlessness in Gilles de la Tourette Syndrome: Cannabis-based medicines improve severe vocal blocking tics in two patients. International journal of molecular sciences, 2017. 18(8): p. 1739.40. Abi-Jaoude, E., et al., Preliminary evidence on cannabis effectiveness and tolerability for adults with Tourette syndrome. The Journal of neuropsychiatry and clinical neurosciences, 2017. 29(4): p. 391-400.41. Suliman, N.A., et al., Delta-9-Tetrahydrocannabinol (∆ 9-THC) Induce Neurogenesis and Improve Cognitive Performances of Male Sprague Dawley Rats. Neurotoxicity research, 2018. 33(2): p. 402-411.42. Currais, A., et al., Amyloid proteotoxicity initiates an inflammatory response blocked by cannabinoids. npj Aging and Mechanisms of Disease, 2016. 2: p. 16012.43. Dennis, I., B.J. Whalley, and G.J. Stephens, Effects of Δ9‐tetrahydrocannabivarin on [35S] GTPγS binding in mouse brain cerebellum and piriform cortex membranes. British journal of pharmacology, 2008. 154(6): p. 1349-1358.44. Bolognini, D., et al., The plant cannabinoid Δ9‐tetrahydrocannabivarin can decrease signs of inflammation and inflammatory pain in mice. British journal of pharmacology, 2010. 160(3): p. 677-687.45. Romano, B., et al., Pure Δ9-tetrahydrocannabivarin and a Cannabis sativa extract with high content in Δ9-tetrahydrocannabivarin inhibit nitrite production in murine peritoneal macrophages. Pharmacological research, 2016. 113: p. 199-208.46. Booth, J.K., J.E. Page, and J. Bohlmann, Terpene synthases from Cannabis sativa. Plos one, 2017. 12(3): p. e0173911.47. Farag, S. and O. Kayser, The Cannabis Plant: Botanical Aspects, in Handbook of Cannabis and Related Pathologies. 2017, Elsevier. p. 3-12.48. Bai, J., et al., Protective effect of D-limonene against oxidative stress-induced cell damage in human lens epithelial cells via the p38 pathway. Oxidative Medicine and Cellular Longevity, 2016. 2016.49. Yun, J., Limonene inhibits methamphetamine-induced locomotor activity via regulation of 5-HT neuronal function and dopamine release. Phytomedicine, 2014. 21(6): p. 883-887.50. d'Alessio, P.A., J.-F. Bisson, and M.C. Béné, Anti-stress effects of d-limonene and its metabolite perillyl alcohol. Rejuvenation research, 2014. 17(2): p. 145-149.51. Jia, S.-S., et al., Induction of apoptosis by D-limonene is mediated by inactivation of Akt in LS174T human colon cancer cells. Oncology reports, 2013. 29(1): p. 349-354.52. Wilkins, S.J., Method for Treating Gastrointestinal Disorders, U.S. Patents, Editor. 1999.53. Lima, T., et al., Analgesic-like activity of essential oil constituents: an update. International journal of molecular sciences, 2017. 18(12): p. 2392.54. Russo, E.B., Taming THC: potential cannabis synergy and phytocannabinoid‐terpenoid entourage effects. British journal of pharmacology, 2011. 163(7): p. 1344-1364.55. Bonini, S.A., et al., Cannabis sativa: A comprehensive ethnopharmacological review of a medicinal plant with a long history. Journal of ethnopharmacology, 2018.56. Kim, D.-S., et al., Alpha-pinene exhibits anti-inflammatory activity through the suppression of MAPKs and the NF-κB pathway in mouse peritoneal macrophages. The American journal of Chinese medicine, 2015. 43(04): p. 731-742.57. Owokotomo, I., et al., In-vitro anti-cholinesterase activity of essential oil from four tropical medicinal plants. Toxicology reports, 2015. 2: p. 850-857.58. Souto-Maior, F.N., et al., Antinociceptive and anticonvulsant effects of the monoterpene linalool oxide. Pharmaceutical biology, 2017. 55(1): p. 63-67.59. 5Fidyt, K., et al., β‐caryophyllene and β‐caryophyllene oxide—natural compounds of anticancer and analgesic properties. Cancer medicine, 2016. 5(10): p. 3007-3017.60. Yang, D., et al., Use of caryophyllene oxide as an antifungal agent in an in vitro experimental model of onychomycosis. Mycopathologia, 2000. 148(2): p. 79-82.61. Opdyke, D., Caryophyllene oxide. Food Chem Toxicol, 1983. 21: p. 661-662.62. Bang, M.-H., et al., Phytol, SSADH inhibitory diterpenoid ofLactuca sativa. Archives of pharmacal research, 2002. 25(5): p. 643-646.63. Deferne, J.-L. and D.W. Pate, Hemp seed oil: A source of valuable essential fatty acids. Journal of the International Hemp Association, 1996. 3(1): p. 4-7.64. Callaway, J., T. Tennilä, and D. Pate, Occurrence of “omega-3” stearidonic acid (cis-6, 9, 12, 15-octadecatetraenoic acid) in hemp (Cannabis sativa L.) seed. Journal of the International Hemp Association, 1996. 3(2): p. 61-64.65. Erasmus, U., Fats that heal, fats that kill: the complete guide to fats, oils, cholesterol, and human health. 1993: Book Publishing Company.66. Tambe, Y., et al., Gastric cytoprotection of the non-steroidal anti-inflammatory sesquiterpene, β-caryophyllene. Planta medica, 1996. 62(05): p. 469-470.67. Malini, T. and G. Vanithakumari, Rat toxicity studies with β-sitosterol. Journal of Ethnopharmacology, 1990. 28(2): p. 221-234.68. Leizer, C., et al., The composition of hemp seed oil and its potential as an important source of nutrition. Journal of Nutraceuticals, functional & medical foods, 2000. 2(4): p. 35-53.69. Antonisamy, P., et al., Anti-diarrhoeal activity of friedelin isolated from Azima tetracantha lam. in wistar rats. South Indian Journal of Biological Sciences, 2015. 1(1): p. 34-37.70. Aswar, U.M., et al., Estrogenic activity of friedelin rich fraction (IND-HE) separated from Cissus quadrangularis and its effect on female sexual function. Pharmacognosy research, 2010. 2(3): p. 138.71. Sunil, C., et al., Antioxidant, free radical scavenging and liver protective effects of friedelin isolated from Azima tetracantha Lam. leaves. Food chemistry, 2013. 139(1-4): p. 860-865.72. Slatkin, D.J., et al., Chemical constituents of Cannabis sativa L. root. Journal of pharmaceutical sciences, 1971. 60(12): p. 1891-1892.73. Aso, E. and I. Ferrer, CB2 cannabinoid receptor as potential target against Alzheimer's disease. Frontiers in neuroscience, 2016. 10: p. 243.74. Fernández‐Ruiz, J., The biomedical challenge of neurodegenerative disorders: an opportunity for cannabinoid‐based therapies to improve on the poor current therapeutic outcomes. British journal of pharmacology, 2018.75. Patton, G.C., et al., Cannabis use and mental health in young people: cohort study. Bmj, 2002. 325(7374): p. 1195-1198.76. Aso Pérez, E., et al., CB2 cannabinoid receptor agonist ameliorates Alzheimer-like phenotype in AβPP/PS1 mice. 2013.77. Walther, S., et al., Delta-9-tetrahydrocannabinol for nighttime agitation in severe dementia. Psychopharmacology, 2006. 185(4): p. 524-528.78. Whiting, P.F., et al., Cannabinoids for medical use: a systematic review and meta-analysis. Jama, 2015. 313(24): p. 2456-2473.79. Bergamaschi, M.M., et al., Cannabidiol reduces the anxiety induced by simulated public speaking in treatment-naive social phobia patients. Neuropsychopharmacology, 2011. 36(6): p. 1219.80. Lim, K., Y.M. See, and J. Lee, A systematic review of the effectiveness of medical cannabis for psychiatric, movement and neurodegenerative disorders. Clinical Psychopharmacology and Neuroscience, 2017. 15(4): p. 301.81. Scherma, M., et al., Cannabinoid CB1/CB2 receptor agonists attenuate hyperactivity and body weight loss in a rat model of activity‐based anorexia. British journal of pharmacology, 2017. 174(16): p. 2682-2695.82. Koch, M., Cannabinoid receptor signaling in central regulation of feeding behavior: A mini-review. Frontiers in neuroscience, 2017. 11: p. 293.83. Andries, A., et al., Dronabinol in severe, enduring anorexia nervosa: a randomized controlled trial. International Journal of Eating Disorders, 2014. 47(1): p. 18-23.84. Weiss, L., et al., Cannabidiol lowers incidence of diabetes in non-obese diabetic mice. Autoimmunity, 2006. 39(2): p. 143-151.85. Comelli, F., et al., Antihyperalgesic effect of a Cannabis sativa extract in a rat model of neuropathic pain: mechanisms involved. Phytotherapy research, 2008. 22(8): p. 1017-1024.86. Yilmaz, H.R., et al., Protective effect of caffeic acid phenethyl ester (CAPE) on lipid peroxidation and antioxidant enzymes in diabetic rat liver. Journal of Biochemical and Molecular Toxicology, 2004. 18(4): p. 234-238.87. Hampson, A., et al., Cannabidiol and (−) Δ9-tetrahydrocannabinol are neuroprotective antioxidants. Proceedings of the National Academy of Sciences, 1998. 95(14): p. 8268-8273.88. Fusar-Poli, P., et al., O’Carro l C, Atakan Z, Zuardi AW, McGuire PK. Distinct effects o f {delta} 9-tetrahydrocannabinol and cannabidiol on neura l activation during emotional processing. Arch Gen Psychiatry, 2009. 66(1): p. 95-105.89. Aran, A., H. Cassuto, and A. Lubotzky, Cannabidiol Based Medical Cannabis in Children with Autism-a Retrospective Feasibility Study (P3. 318). 2018, AAN Enterprises.90. Ilgen, M.A., et al., Characteristics of adults seeking medical marijuana certification. Drug and alcohol dependence, 2013. 132(3): p. 654-659.91. Couch, D.G., et al., The use of cannabinoids in colitis: a systematic review and meta-analysis. Inflammatory bowel diseases, 2018. 24(4): p. 680-697.92. Naftali, T., et al., Cannabis for inflammatory bowel disease. Digestive Diseases, 2014. 32(4): p. 468-474.93. Pagano, E., et al., An orally active Cannabis extract with high content in cannabidiol attenuates chemically-induced intestinal inflammation and hypermotility in the mouse. Frontiers in pharmacology, 2016. 7: p. 341.94. Hasenoehrl, C., M. Storr, and R. Schicho, Cannabinoids for treating inflammatory bowel diseases: where are we and where do we go? Expert review of gastroenterology & hepatology, 2017. 11(4): p. 329-337.95. Nallathambi, R., et al., Anti-inflammatory activity in colon models is derived from Δ9-tetrahydrocannabinolic acid that interacts with additional compounds in Cannabis extracts. Cannabis and cannabinoid research, 2017. 2(1): p. 167-182.96. Soelberg Sorensen, P., Safety concerns and risk management of multiple sclerosis therapies. Acta Neurologica Scandinavica, 2017. 136(3): p. 168-186.97. Keating, G.M., Delta-9-tetrahydrocannabinol/cannabidiol oromucosal spray (Sativex®): a review in multiple sclerosis-related spasticity. Drugs, 2017. 77(5): p. 563-574.98. Robson, P., Therapeutic potential of cannabinoid medicines. Drug testing and analysis, 2014. 6(1-2): p. 24-30.99. Leweke, F., et al., Cannabidiol enhances anandamide signaling and alleviates psychotic symptoms of schizophrenia. Translational psychiatry, 2012. 2(3): p. e94.100. Ramar, K., et al., Medical cannabis and the treatment of obstructive sleep apnea: an American Academy of Sleep Medicine position statement. Journal of Clinical Sleep Medicine, 2018. 14(04): p. 679-681.101. Calik, M.W. and D.W. Carley, Effects of cannabinoid agonists and antagonists on sleep and breathing in Sprague-Dawley rats. Sleep, 2017. 40(9).102. Babson, K.A., J. Sottile, and D. Morabito, Cannabis, cannabinoids, and sleep: a review of the literature. Current psychiatry reports, 2017. 19(4): p. 23.
Toplam 1 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Eczacılık ve İlaç Bilimleri
Bölüm Derleme
Yazarlar

Ufuk Koca Çalışkan 0000-0002-5216-7588

Selda Yıldırım 0000-0002-1611-5617

Yayımlanma Tarihi 31 Ocak 2020
Gönderilme Tarihi 1 Mayıs 2019
Kabul Tarihi 17 Eylül 2019
Yayımlandığı Sayı Yıl 2020 Cilt: 44 Sayı: 1

Kaynak Göster

APA Koca Çalışkan, U., & Yıldırım, S. (2020). KENEVİR VE SAĞLIK ALANINDA KULLANIMI. Journal of Faculty of Pharmacy of Ankara University, 44(1), 112-136. https://doi.org/10.33483/jfpau.559665
AMA Koca Çalışkan U, Yıldırım S. KENEVİR VE SAĞLIK ALANINDA KULLANIMI. Ankara Ecz. Fak. Derg. Ocak 2020;44(1):112-136. doi:10.33483/jfpau.559665
Chicago Koca Çalışkan, Ufuk, ve Selda Yıldırım. “KENEVİR VE SAĞLIK ALANINDA KULLANIMI”. Journal of Faculty of Pharmacy of Ankara University 44, sy. 1 (Ocak 2020): 112-36. https://doi.org/10.33483/jfpau.559665.
EndNote Koca Çalışkan U, Yıldırım S (01 Ocak 2020) KENEVİR VE SAĞLIK ALANINDA KULLANIMI. Journal of Faculty of Pharmacy of Ankara University 44 1 112–136.
IEEE U. Koca Çalışkan ve S. Yıldırım, “KENEVİR VE SAĞLIK ALANINDA KULLANIMI”, Ankara Ecz. Fak. Derg., c. 44, sy. 1, ss. 112–136, 2020, doi: 10.33483/jfpau.559665.
ISNAD Koca Çalışkan, Ufuk - Yıldırım, Selda. “KENEVİR VE SAĞLIK ALANINDA KULLANIMI”. Journal of Faculty of Pharmacy of Ankara University 44/1 (Ocak 2020), 112-136. https://doi.org/10.33483/jfpau.559665.
JAMA Koca Çalışkan U, Yıldırım S. KENEVİR VE SAĞLIK ALANINDA KULLANIMI. Ankara Ecz. Fak. Derg. 2020;44:112–136.
MLA Koca Çalışkan, Ufuk ve Selda Yıldırım. “KENEVİR VE SAĞLIK ALANINDA KULLANIMI”. Journal of Faculty of Pharmacy of Ankara University, c. 44, sy. 1, 2020, ss. 112-36, doi:10.33483/jfpau.559665.
Vancouver Koca Çalışkan U, Yıldırım S. KENEVİR VE SAĞLIK ALANINDA KULLANIMI. Ankara Ecz. Fak. Derg. 2020;44(1):112-36.

Kapsam ve Amaç

Ankara Üniversitesi Eczacılık Fakültesi Dergisi, açık erişim, hakemli bir dergi olup Türkçe veya İngilizce olarak farmasötik bilimler alanındaki önemli gelişmeleri içeren orijinal araştırmalar, derlemeler ve kısa bildiriler için uluslararası bir yayım ortamıdır. Bilimsel toplantılarda sunulan bildiriler supleman özel sayısı olarak dergide yayımlanabilir. Ayrıca, tüm farmasötik alandaki gelecek ve önceki ulusal ve uluslararası bilimsel toplantılar ile sosyal aktiviteleri içerir.