Araştırma Makalesi
BibTex RIS Kaynak Göster

AKCİĞER TÜMÖRLERİNE YÖNELİK PAKLİTAKSEL YÜKLÜ POLİKAPROLAKTON NANOPARTİKÜLLERİ; FORMÜLASYON, KAPSAMLI İN VİTRO KARAKTERİZASYON VE SALIM KİNETİK ÇALIŞMALARI

Yıl 2022, Cilt: 46 Sayı: 3, 1009 - 1029, 30.09.2022
https://doi.org/10.33483/jfpau.1161238

Öz

Amaç: Günümüzde kanser hala en sık görülen kronik hastalıklar arasında yer almaktadır. Polikaprolakton gibi biyouyumlu ve biyoparçalanır polimerlerle hazırlanan nanopartiküler ilaç taşıyıcı sistemler, düşük çözünürlük ve düşük biyoyararlanım gösteren birçok antikanser ajan için rasyonel bir çözümdür. Bu çalışmanın amacı, güçlü bir antikanser olduğu bilinen paklitaksel yüklü polikaprolakton nanopartiküllerinin hazırlanması ve hazırlanan nanopartiküllerin in vitro karakterizasyonlarını ve salım kinetik mekanizmalarını aydınlatmaktır.
Gereç ve Yöntem: Nanoçöktürme yöntemi ile paklitaksel yüklü polikaprolakton nanopartiküllerinin hazırlanması amaçlanmıştır. Polikaprolakton polimerinin iki farklı moleküler ağırlığı (Mw: 14.000 ve Mw: 80.000) ile ön formülasyon çalışmaları yapılmıştır. Hazırlanan nanopartiküller, katyonik yüzey yükü elde etmek ve hücresel etkileşimi artırmak için Chitosan (CS) veya Poly-l-lisin (PLL) ile ayrı ayrı kaplanmıştır. Formülasyonların kapsamlı karakterizasyon çalışmaları ve salım kinetik çalışmaları yapılmıştır.
Sonuç ve Tartışma: Formülasyonların partikül boyutu 188 nm ila 383 nm arasında değişmektedir. Enkapsülasyon etkinliği, farklı formülasyonlarda %77'ye kadar yükselmiştir. SEM analizi, nanopartiküllerin küre şeklinde olduğunu doğrulamıştır. İn vitro salım çalışmaları kapsamında 96 saate kadar salım devam etmiş ve ilk 24 saatte terapötik yükün %50'sinden azı salınmıştır. Matematiksel modelleme çalışmaları, formülasyonların salım kinetiğinin, yüksek korelasyon gösteren Korsmeyer-Peppas, Peppas-Sahlin ve Weibull modelleri ile birden fazla modele uyduğunu göstermiştir.

Kaynakça

  • 1. Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., Bray, F. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 71(3), 209-249. [CrossRef]
  • 2. Houston, K. A., Henley, S. J., Li, J., White, M. C., Richards, T. B. (2014). Patterns in lung cancer incidence rates and trends by histologic type in the United States, 2004-2009. Lung Cancer, 86(1), 22-28. [CrossRef]
  • 3. Zarogoulidis, K., Zarogoulidis, P., Darwiche, K., Boutsikou, E., Machairiotis, N., Tsakiridis, K., Katsikogiannis, N., Kougioumtzi, I., Karapantzos, I., Huang, H., Spyratos, D. (2013). Treatment of non-small cell lung cancer (NSCLC). Journal of Thoracic Disease, 5 (Suppl 4), S389-S396. [CrossRef]
  • 4. Zappa, C., Mousa, S. A. (2016). Non-small cell lung cancer: Current treatment and future advances. Translational Lung Cancer Research, 5(3), 288-300. [CrossRef]
  • 5. Mangal, S., Gao, W., Li, T., Zhou, Q. T. (2017). Pulmonary delivery of nanoparticle chemotherapy for the treatment of lung cancers: Challenges and opportunities. Acta Pharmacologica Sinica, 38(6), 782-797. [CrossRef]
  • 6. Chandolu, V., Dass, C. R. (2013). Treatment of lung cancer using nanoparticle drug delivery systems. Current Drug Discovery Technologies, 10(2), 170-176. [CrossRef]
  • 7. Massey, A. E., Sikander, M., Chauhan, N., Kumari, S., Setua, S., Shetty, A. B., Mandil, H., Kashyap, V. K., Khan, S., Jaggi, M., Yallapu, M. M., Hafeez, B. B., Chauhan, S. C. (2019). Next-generation paclitaxel-nanoparticle formulation for pancreatic cancer treatment. Nanomedicine: Nanotechnology, Biology, and Medicine, 20, 102027. [CrossRef]
  • 8. Xiao, H., Verdier-Pinard, P., Fernandez-Fuentes, N., Burd, B., Angeletti, R., Fiser, A., Horwitz, S. B., Orr, G. A. (2006). Insights into the mechanism of microtubule stabilization by Taxol. Proceedings of the National Academy of Sciences of the United States of America, 103(27), 10166-10173. [CrossRef]
  • 9. Shurin, G. V., Tourkova, I. L., Shurin, M. R. (2008). Low-dose chemotherapeutic agents regulate small Rho GTPase activity in dendritic cells. Journal of Immunotherapy, 31(5),491-499. [CrossRef]
  • 10. Ruttala, H. B., Ko, Y. T. (2015). Liposome encapsulated albumin-paclitaxel nanoparticle for enhanced antitumor efficacy. Pharmaceutical Research, 32(3), 1002-1016. [CrossRef]
  • 11. Bernabeu, E., Helguera, G., Legaspi, M. J., Gonzalez, L., Hocht, C., Taira, C., Chiappetta, D. A. (2014). Paclitaxel-loaded PCL-TPGS nanoparticles: In vitro and in vivo performance compared with Abraxane®. Colloids and Surfaces. B, Biointerfaces, 113, 43-50. [CrossRef]
  • 12. Lukyanov, A. N., Torchilin, V. P. (2004). Micelles from lipid derivatives of water-soluble polymers as delivery systems for poorly soluble drugs. Advanced Drug Delivery Reviews, 56(9), 1273-1289.[CrossRef]
  • 13. Joshi, K., Chandra, A., Jain, K., Talegaonkar, S. (2019). Nanocrystalization: An emerging technology to enhance the bioavailability of poorly soluble drugs. Pharmaceutical Nanotechnology, 7(4), 259-278. [CrossRef]
  • 14. Thamake, S. I., Raut, S. L., Ranjan, A. P., Gryczynski, Z., Vishwanatha, J. K. (2011). Surface functionalization of PLGA nanoparticles by non-covalent insertion of a homo-bifunctional spacer for active targeting in cancer therapy. Nanotechnology, 22(3), 035101. [CrossRef]
  • 15. Bilensoy, E., Sarisozen, C., Esendağli, G., Doğan, A. L., Aktaş, Y., Sen, M., Mungan, N. A. (2009). Intravesical cationic nanoparticles of chitosan and polycaprolactone for the delivery of Mitomycin C to bladder tumors. International Journal of Pharmaceutics, 371(1-2), 170-176. [CrossRef]
  • 16. W. Badri W., El Asbahani, A., Miladi, K., Baraket, A., Agusti, G., Nazari, Q. A., Errachid,A., Fessi, H., Elaissari, A. (2018). Poly (ε-caprolactone) nanoparticles loaded with indomethacin and Nigella Sativa L. essential oil for the topical treatment of inflammation. Journal of Drug Delivery Science and Technology, 46, 234-242. [CrossRef]
  • 17. Varan, C., Bilensoy, E. (2017). Cationic PEGylated polycaprolactone nanoparticles carrying post-operation docetaxel for glioma treatment. Beilstein Journal of Nanotechnology, 8, 1446-1456.[CrossRef]
  • 18. Jia, W., Gu, Y., Gou, M., Dai, M., Li, X., Kan, B., Yang, J., Song, Q., Wei, Y., Qian, Z. (2008). Preparation of biodegradable polycaprolactone/poly (ethylene glycol)/polycaprolactone (PCEC) nanoparticles. Drug Delivery, 15(7), 409-416. [CrossRef]
  • 19. Lima, I. A., Khalil, N. M., Tominaga, T. T., Lechanteur, A., Sarmento, B., Mainardes, R. M. (2018). Mucoadhesive chitosan-coated PLGA nanoparticles for oral delivery of ferulic acid. Artificial Cells, Nanomedicine, and Biotechnology, 46(sup2), 993-1002. [CrossRef]
  • 20. Cheung, R. C., Ng, T. B., Wong, J. H., Chan, W. Y. (2015). Chitosan: An update on potential biomedical and pharmaceutical applications. Marine Drugs, 13(8), 5156-5186. [CrossRef]
  • 21. Prabaharan, M. (2008). Review paper: Chitosan derivatives as promising materials for controlled drug delivery. Journal of Biomaterials Applications, 23(1), 5-36. [CrossRef]
  • 22. Yuan, Y., Shi, X., Gan, Z., Wang, F. (2018). Modification of porous PLGA microspheres by poly-l-lysine for use as tissue engineering scaffolds. Colloids and Surfaces. B, Biointerfaces, 161, 162-168. [CrossRef]
  • 23. Miladi, K., Sfar, S., Fessi, H., Elaissari, A. (2015). Encapsulation of alendronate sodium by nanoprecipitation and double emulsion: From preparation to in vitro studies. Industrial Crops and Products, 72, 24-33. [CrossRef]
  • 24. Jesus, S., Bernardi, N., da Silva, J., Colaço, M., Panão Costa, J., Fonte, P., Borges, O. (2020). Unravelling the immunotoxicity of polycaprolactone nanoparticles-effects of polymer molecular weight, hydrolysis, and blends. Chemical Research in Toxicology, 33(11), 2819-2833. [CrossRef]
  • 25. Zhang, Y., Huo, M., Zhou, J., Zou, A., Li, W., Yao, C., Xie, S. (2010). DDSolver: An add-in program for modeling and comparison of drug dissolution profiles. The AAPS Journal, 12(3), 263-271. [CrossRef]
  • 26. Gamal, A., Saeed, H., El-Ela, F., Salem, H. F. (2021). Improving the antitumor activity and bioavailability of sonidegib for the treatment of skin cancer. Pharmaceutics, 13(10), 1560. [CrossRef]
  • 27. Murtaza, G., Ahmad, M., Khan, S. A., Hussain, I. (2012). Evaluation of cefixime-loaded chitosan microspheres: Analysis of dissolution data using DDSolver. Dissolution Technologies, 19 (2), 13-19. [CrossRef]
  • 28. FDA, U. (1997). Guidance for Industry: Dissolution testing of immediate-release solid oral dosage forms. Food and Drug Administration, Center for Drug Evaluation and Research (CDER), 1-11.
  • 29. Aldeek, F., McCutcheon, N., Smith, C., Miller, J. H., Danielson, T. L. (2021). Dissolution testing of nicotine release from OTDN pouches: Product characterization and product-to-product comparison. Separations, 8 (1), 7. [CrossRef]
  • 30. Puthli, S., Vavia, P. R. (2009). Stability studies of microparticulate system with piroxicam as model drug. AAPS Pharmscitech, 10 (3), 872-880. [CrossRef]
  • 31. Moore, T., Shangraw, R., Habib, Y. (1996). In dissolution calibrator tablets: A recommendation for new calibrator tablets to replace both current USP calibrator tablets. Pharmacopeial Forum, pp:2423-2428.
  • 32. Yang, W., Wang, L., Mettenbrink, E. M., DeAngelis, P. L., Wilhelm, S. (2021). Nanoparticle Toxicology. Annual Review of Pharmacology and Toxicology, 61(1), 269-289. [CrossRef]
  • 33. Mailänder, V., Landfester, K. (2009). Interaction of nanoparticles with cells. Biomacromolecules, 10(9), 2379–2400. [CrossRef]
  • 34. Yue, Z. G., Wei, W., Lv, P. P., Yue, H., Wang, L. Y., Su, Z. G., Ma, G. H. (2011). Surface charge affects cellular uptake and intracellular trafficking of chitosan-based nanoparticles. Biomacromolecules, 12(7), 2440–2446. [CrossRef]
  • 35. Ünal, H., d’Angelo, I., Pagano, E., Borrelli F., Izoo A., Ungaro F., Quaglia F., Bilensoy E. (2015). Core–shell hybrid nanocapsules for oral delivery of camptothecin: Formulation development, in vitro and in vivo evaluation. Journal of Nanoparticle Research, 17, 42. [CrossRef]
  • 36. Chigumira, W., Maposa, P., Gadaga, L.L., Dube, A., Tagwireyi, D., Maponga, C. C. (2015). Preparation and evaluation of pralidoxime-loaded PLGA nanoparticles as potential carriers of the drug across the blood brain barrier. Journal of Nanomaterials, 2015, 1-5.[CrossRef]
  • 37. Ali, R., Farah, A., Binkhathlan, Z. (2017). Development and characterization of methoxy poly(ethylene oxide)-block-poly(ε-caprolactone) (PEO-b-PCL) micelles as vehicles for the solubilization and delivery of tacrolimus. Saudi Pharmaceutical Journal : SPJ : The Official Publication of the Saudi Pharmaceutical Society, 25(2), 258-265. [CrossRef]
  • 38. Badran, M. M., Alomrani, A. H., Harisa, G. I., Ashour, A. E., Kumar, A., Yassin, A. E. (2018). Novel docetaxel chitosan-coated PLGA/PCL nanoparticles with magnified cytotoxicity and bioavailability. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 106, 1461-1468. [CrossRef]
  • 39. Ubrich, N., Bouillot, P., Pellerin, C., Hoffman, M., Maincent, P. (2004). Preparation and characterization of propranolol hydrochloride nanoparticles: A comparative study. Journal of Controlled Release: Official Journal of the Controlled Release Society, 97(2), 291-300. [CrossRef]
  • 40. Varan, G., Benito, J. M., Mellet, C. O., Bilensoy, E. (2017). Development of polycationic amphiphilic cyclodextrin nanoparticles for anticancer drug delivery. Beilstein Journal of Nanotechnology, 8, 1457-1468. [CrossRef]
  • 41. Mora-Huertas, C. E., Fessi, H., Elaissari, A. (2010). Polymer-based nanocapsules for drug delivery. International Journal of Pharmaceutics, 385(1-2), 113-142. [CrossRef]
  • 42. Azadi, A., Hamidi, M., Rouini, M. R. (2013). Methotrexate-loaded chitosan nanogels as 'Trojan Horses' for drug delivery to brain: Preparation and in vitro/in vivo characterization. International Journal of Biological Macromolecules, 62, 523-530. [CrossRef]
  • 43. Papadopoulou, V., Kosmidis, K., Vlachou, M., Macheras, P. (2006). On the use of the Weibull function for the discernment of drug release mechanisms. International Journal of Pharmaceutics, 309(1-2), 44-50. [CrossRef]
  • 44. Unagolla, J. M., Jayasuriya, A. C. (2018). Drug transport mechanisms and in vitro release kinetics of vancomycin encapsulated chitosan-alginate polyelectrolyte microparticles as a controlled drug delivery system. European Journal of Pharmaceutical Sciences: Official Journal of the European Federation for Pharmaceutical Sciences, 114, 199-209. [CrossRef]
  • 45. Öztürk, A. A., Yenilmez, E., Özarda, M. G. (2019). Clarithromycin-loaded poly (lactic-co-glycolic acid) (PLGA) nanoparticles for oral administration: Effect of polymer molecular weight and surface modification with chitosan on formulation, nanoparticle characterization and antibacterial effects. Polymers, 11(10), 1632. [CrossRef]
  • 46. Yang, H., Li, J., Patel, S. K., Palmer, K. E., Devlin, B., Rohan, L. C. (2019). Design of poly(lactic-co-glycolic Acid) (PLGA) nanoparticles for vaginal co-delivery of griffithsin and dapivirine and their synergistic effect for HIV prophylaxis. Pharmaceutics, 11(4), 184. [CrossRef]
  • 47. Supramaniam, J., Adnan, R., Mohd Kaus, N. H., Bushra, R. (2018). Magnetic nanocellulose alginate hydrogel beads as potential drug delivery system. International Journal of Biological Macromolecules, 118(PtA), 640-648. [CrossRef]
  • 48. Soares, P., Sousa, A. I., Silva, J. C., Ferreira, I., Novo, C., Borges, J. P. (2016). Chitosan-based nanoparticles as drug delivery systems for doxorubicin: Optimization and modelling. Carbohydrate Polymers, 147, 304-312. [CrossRef]

PACLITAXEL-LOADED POLYCAPROLACTONE NANOPARTICLES FOR LUNG TUMORS; FORMULATION, COMPREHENSIVE IN VITRO CHARACTERIZATION AND RELEASE KINETIC STUDIES

Yıl 2022, Cilt: 46 Sayı: 3, 1009 - 1029, 30.09.2022
https://doi.org/10.33483/jfpau.1161238

Öz

Objective: Today, cancer is still among the most common chronic diseases. Nanoparticular drug delivery systems prepared with biocompatible and biodegradable polymers such as polycaprolactone are rational solution for anticancer agents with poor solubility and low bioavailability. The aim of this study is to prepare paclitaxel-loaded polycaprolactone nanoparticles, which is known to be a potent anticancer, and to elucidate in vitro characteristics and release kinetic mechanisms.
Material and Method: It was aimed to prepare paclitaxel-loaded polycaprolactone nanoparticles by nanoprecipitation. Preformulation studies were carried out with different molecular weights of polycaprolactone (Mw: 14.000, Mw: 80.000). Nanoparticles were coated with Chitosan or Poly-l-lysine to obtain cationic surface charge and to increase cellular interaction. Comprehensive characterization of formulations and release kinetic studies were performed.
Result and Discussion: The particle size of the formulations ranged from 188 nm to 383 nm. Encapsulation efficiency increased to 77% in different formulations. SEM analysis confirmed the nanoparticles were spherical. Within the scope of in vitro release studies, the release continued for up to 96 hours and less than 50% of the therapeutic load was released in the first 24 hours. Mathematical modeling indicated that the release kinetics fit more than one model with the Korsmeyer-Peppas, Peppas-Sahlin and Weibull models, which show high correlation.

Kaynakça

  • 1. Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., Bray, F. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 71(3), 209-249. [CrossRef]
  • 2. Houston, K. A., Henley, S. J., Li, J., White, M. C., Richards, T. B. (2014). Patterns in lung cancer incidence rates and trends by histologic type in the United States, 2004-2009. Lung Cancer, 86(1), 22-28. [CrossRef]
  • 3. Zarogoulidis, K., Zarogoulidis, P., Darwiche, K., Boutsikou, E., Machairiotis, N., Tsakiridis, K., Katsikogiannis, N., Kougioumtzi, I., Karapantzos, I., Huang, H., Spyratos, D. (2013). Treatment of non-small cell lung cancer (NSCLC). Journal of Thoracic Disease, 5 (Suppl 4), S389-S396. [CrossRef]
  • 4. Zappa, C., Mousa, S. A. (2016). Non-small cell lung cancer: Current treatment and future advances. Translational Lung Cancer Research, 5(3), 288-300. [CrossRef]
  • 5. Mangal, S., Gao, W., Li, T., Zhou, Q. T. (2017). Pulmonary delivery of nanoparticle chemotherapy for the treatment of lung cancers: Challenges and opportunities. Acta Pharmacologica Sinica, 38(6), 782-797. [CrossRef]
  • 6. Chandolu, V., Dass, C. R. (2013). Treatment of lung cancer using nanoparticle drug delivery systems. Current Drug Discovery Technologies, 10(2), 170-176. [CrossRef]
  • 7. Massey, A. E., Sikander, M., Chauhan, N., Kumari, S., Setua, S., Shetty, A. B., Mandil, H., Kashyap, V. K., Khan, S., Jaggi, M., Yallapu, M. M., Hafeez, B. B., Chauhan, S. C. (2019). Next-generation paclitaxel-nanoparticle formulation for pancreatic cancer treatment. Nanomedicine: Nanotechnology, Biology, and Medicine, 20, 102027. [CrossRef]
  • 8. Xiao, H., Verdier-Pinard, P., Fernandez-Fuentes, N., Burd, B., Angeletti, R., Fiser, A., Horwitz, S. B., Orr, G. A. (2006). Insights into the mechanism of microtubule stabilization by Taxol. Proceedings of the National Academy of Sciences of the United States of America, 103(27), 10166-10173. [CrossRef]
  • 9. Shurin, G. V., Tourkova, I. L., Shurin, M. R. (2008). Low-dose chemotherapeutic agents regulate small Rho GTPase activity in dendritic cells. Journal of Immunotherapy, 31(5),491-499. [CrossRef]
  • 10. Ruttala, H. B., Ko, Y. T. (2015). Liposome encapsulated albumin-paclitaxel nanoparticle for enhanced antitumor efficacy. Pharmaceutical Research, 32(3), 1002-1016. [CrossRef]
  • 11. Bernabeu, E., Helguera, G., Legaspi, M. J., Gonzalez, L., Hocht, C., Taira, C., Chiappetta, D. A. (2014). Paclitaxel-loaded PCL-TPGS nanoparticles: In vitro and in vivo performance compared with Abraxane®. Colloids and Surfaces. B, Biointerfaces, 113, 43-50. [CrossRef]
  • 12. Lukyanov, A. N., Torchilin, V. P. (2004). Micelles from lipid derivatives of water-soluble polymers as delivery systems for poorly soluble drugs. Advanced Drug Delivery Reviews, 56(9), 1273-1289.[CrossRef]
  • 13. Joshi, K., Chandra, A., Jain, K., Talegaonkar, S. (2019). Nanocrystalization: An emerging technology to enhance the bioavailability of poorly soluble drugs. Pharmaceutical Nanotechnology, 7(4), 259-278. [CrossRef]
  • 14. Thamake, S. I., Raut, S. L., Ranjan, A. P., Gryczynski, Z., Vishwanatha, J. K. (2011). Surface functionalization of PLGA nanoparticles by non-covalent insertion of a homo-bifunctional spacer for active targeting in cancer therapy. Nanotechnology, 22(3), 035101. [CrossRef]
  • 15. Bilensoy, E., Sarisozen, C., Esendağli, G., Doğan, A. L., Aktaş, Y., Sen, M., Mungan, N. A. (2009). Intravesical cationic nanoparticles of chitosan and polycaprolactone for the delivery of Mitomycin C to bladder tumors. International Journal of Pharmaceutics, 371(1-2), 170-176. [CrossRef]
  • 16. W. Badri W., El Asbahani, A., Miladi, K., Baraket, A., Agusti, G., Nazari, Q. A., Errachid,A., Fessi, H., Elaissari, A. (2018). Poly (ε-caprolactone) nanoparticles loaded with indomethacin and Nigella Sativa L. essential oil for the topical treatment of inflammation. Journal of Drug Delivery Science and Technology, 46, 234-242. [CrossRef]
  • 17. Varan, C., Bilensoy, E. (2017). Cationic PEGylated polycaprolactone nanoparticles carrying post-operation docetaxel for glioma treatment. Beilstein Journal of Nanotechnology, 8, 1446-1456.[CrossRef]
  • 18. Jia, W., Gu, Y., Gou, M., Dai, M., Li, X., Kan, B., Yang, J., Song, Q., Wei, Y., Qian, Z. (2008). Preparation of biodegradable polycaprolactone/poly (ethylene glycol)/polycaprolactone (PCEC) nanoparticles. Drug Delivery, 15(7), 409-416. [CrossRef]
  • 19. Lima, I. A., Khalil, N. M., Tominaga, T. T., Lechanteur, A., Sarmento, B., Mainardes, R. M. (2018). Mucoadhesive chitosan-coated PLGA nanoparticles for oral delivery of ferulic acid. Artificial Cells, Nanomedicine, and Biotechnology, 46(sup2), 993-1002. [CrossRef]
  • 20. Cheung, R. C., Ng, T. B., Wong, J. H., Chan, W. Y. (2015). Chitosan: An update on potential biomedical and pharmaceutical applications. Marine Drugs, 13(8), 5156-5186. [CrossRef]
  • 21. Prabaharan, M. (2008). Review paper: Chitosan derivatives as promising materials for controlled drug delivery. Journal of Biomaterials Applications, 23(1), 5-36. [CrossRef]
  • 22. Yuan, Y., Shi, X., Gan, Z., Wang, F. (2018). Modification of porous PLGA microspheres by poly-l-lysine for use as tissue engineering scaffolds. Colloids and Surfaces. B, Biointerfaces, 161, 162-168. [CrossRef]
  • 23. Miladi, K., Sfar, S., Fessi, H., Elaissari, A. (2015). Encapsulation of alendronate sodium by nanoprecipitation and double emulsion: From preparation to in vitro studies. Industrial Crops and Products, 72, 24-33. [CrossRef]
  • 24. Jesus, S., Bernardi, N., da Silva, J., Colaço, M., Panão Costa, J., Fonte, P., Borges, O. (2020). Unravelling the immunotoxicity of polycaprolactone nanoparticles-effects of polymer molecular weight, hydrolysis, and blends. Chemical Research in Toxicology, 33(11), 2819-2833. [CrossRef]
  • 25. Zhang, Y., Huo, M., Zhou, J., Zou, A., Li, W., Yao, C., Xie, S. (2010). DDSolver: An add-in program for modeling and comparison of drug dissolution profiles. The AAPS Journal, 12(3), 263-271. [CrossRef]
  • 26. Gamal, A., Saeed, H., El-Ela, F., Salem, H. F. (2021). Improving the antitumor activity and bioavailability of sonidegib for the treatment of skin cancer. Pharmaceutics, 13(10), 1560. [CrossRef]
  • 27. Murtaza, G., Ahmad, M., Khan, S. A., Hussain, I. (2012). Evaluation of cefixime-loaded chitosan microspheres: Analysis of dissolution data using DDSolver. Dissolution Technologies, 19 (2), 13-19. [CrossRef]
  • 28. FDA, U. (1997). Guidance for Industry: Dissolution testing of immediate-release solid oral dosage forms. Food and Drug Administration, Center for Drug Evaluation and Research (CDER), 1-11.
  • 29. Aldeek, F., McCutcheon, N., Smith, C., Miller, J. H., Danielson, T. L. (2021). Dissolution testing of nicotine release from OTDN pouches: Product characterization and product-to-product comparison. Separations, 8 (1), 7. [CrossRef]
  • 30. Puthli, S., Vavia, P. R. (2009). Stability studies of microparticulate system with piroxicam as model drug. AAPS Pharmscitech, 10 (3), 872-880. [CrossRef]
  • 31. Moore, T., Shangraw, R., Habib, Y. (1996). In dissolution calibrator tablets: A recommendation for new calibrator tablets to replace both current USP calibrator tablets. Pharmacopeial Forum, pp:2423-2428.
  • 32. Yang, W., Wang, L., Mettenbrink, E. M., DeAngelis, P. L., Wilhelm, S. (2021). Nanoparticle Toxicology. Annual Review of Pharmacology and Toxicology, 61(1), 269-289. [CrossRef]
  • 33. Mailänder, V., Landfester, K. (2009). Interaction of nanoparticles with cells. Biomacromolecules, 10(9), 2379–2400. [CrossRef]
  • 34. Yue, Z. G., Wei, W., Lv, P. P., Yue, H., Wang, L. Y., Su, Z. G., Ma, G. H. (2011). Surface charge affects cellular uptake and intracellular trafficking of chitosan-based nanoparticles. Biomacromolecules, 12(7), 2440–2446. [CrossRef]
  • 35. Ünal, H., d’Angelo, I., Pagano, E., Borrelli F., Izoo A., Ungaro F., Quaglia F., Bilensoy E. (2015). Core–shell hybrid nanocapsules for oral delivery of camptothecin: Formulation development, in vitro and in vivo evaluation. Journal of Nanoparticle Research, 17, 42. [CrossRef]
  • 36. Chigumira, W., Maposa, P., Gadaga, L.L., Dube, A., Tagwireyi, D., Maponga, C. C. (2015). Preparation and evaluation of pralidoxime-loaded PLGA nanoparticles as potential carriers of the drug across the blood brain barrier. Journal of Nanomaterials, 2015, 1-5.[CrossRef]
  • 37. Ali, R., Farah, A., Binkhathlan, Z. (2017). Development and characterization of methoxy poly(ethylene oxide)-block-poly(ε-caprolactone) (PEO-b-PCL) micelles as vehicles for the solubilization and delivery of tacrolimus. Saudi Pharmaceutical Journal : SPJ : The Official Publication of the Saudi Pharmaceutical Society, 25(2), 258-265. [CrossRef]
  • 38. Badran, M. M., Alomrani, A. H., Harisa, G. I., Ashour, A. E., Kumar, A., Yassin, A. E. (2018). Novel docetaxel chitosan-coated PLGA/PCL nanoparticles with magnified cytotoxicity and bioavailability. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 106, 1461-1468. [CrossRef]
  • 39. Ubrich, N., Bouillot, P., Pellerin, C., Hoffman, M., Maincent, P. (2004). Preparation and characterization of propranolol hydrochloride nanoparticles: A comparative study. Journal of Controlled Release: Official Journal of the Controlled Release Society, 97(2), 291-300. [CrossRef]
  • 40. Varan, G., Benito, J. M., Mellet, C. O., Bilensoy, E. (2017). Development of polycationic amphiphilic cyclodextrin nanoparticles for anticancer drug delivery. Beilstein Journal of Nanotechnology, 8, 1457-1468. [CrossRef]
  • 41. Mora-Huertas, C. E., Fessi, H., Elaissari, A. (2010). Polymer-based nanocapsules for drug delivery. International Journal of Pharmaceutics, 385(1-2), 113-142. [CrossRef]
  • 42. Azadi, A., Hamidi, M., Rouini, M. R. (2013). Methotrexate-loaded chitosan nanogels as 'Trojan Horses' for drug delivery to brain: Preparation and in vitro/in vivo characterization. International Journal of Biological Macromolecules, 62, 523-530. [CrossRef]
  • 43. Papadopoulou, V., Kosmidis, K., Vlachou, M., Macheras, P. (2006). On the use of the Weibull function for the discernment of drug release mechanisms. International Journal of Pharmaceutics, 309(1-2), 44-50. [CrossRef]
  • 44. Unagolla, J. M., Jayasuriya, A. C. (2018). Drug transport mechanisms and in vitro release kinetics of vancomycin encapsulated chitosan-alginate polyelectrolyte microparticles as a controlled drug delivery system. European Journal of Pharmaceutical Sciences: Official Journal of the European Federation for Pharmaceutical Sciences, 114, 199-209. [CrossRef]
  • 45. Öztürk, A. A., Yenilmez, E., Özarda, M. G. (2019). Clarithromycin-loaded poly (lactic-co-glycolic acid) (PLGA) nanoparticles for oral administration: Effect of polymer molecular weight and surface modification with chitosan on formulation, nanoparticle characterization and antibacterial effects. Polymers, 11(10), 1632. [CrossRef]
  • 46. Yang, H., Li, J., Patel, S. K., Palmer, K. E., Devlin, B., Rohan, L. C. (2019). Design of poly(lactic-co-glycolic Acid) (PLGA) nanoparticles for vaginal co-delivery of griffithsin and dapivirine and their synergistic effect for HIV prophylaxis. Pharmaceutics, 11(4), 184. [CrossRef]
  • 47. Supramaniam, J., Adnan, R., Mohd Kaus, N. H., Bushra, R. (2018). Magnetic nanocellulose alginate hydrogel beads as potential drug delivery system. International Journal of Biological Macromolecules, 118(PtA), 640-648. [CrossRef]
  • 48. Soares, P., Sousa, A. I., Silva, J. C., Ferreira, I., Novo, C., Borges, J. P. (2016). Chitosan-based nanoparticles as drug delivery systems for doxorubicin: Optimization and modelling. Carbohydrate Polymers, 147, 304-312. [CrossRef]
Toplam 48 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Eczacılık ve İlaç Bilimleri
Bölüm Araştırma Makalesi
Yazarlar

Sedat Ünal 0000-0002-1518-010X

Osman Doğan 0000-0003-2314-6793

Yeşim Aktaş 0000-0002-3427-6078

Yayımlanma Tarihi 30 Eylül 2022
Gönderilme Tarihi 12 Ağustos 2022
Kabul Tarihi 19 Eylül 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 46 Sayı: 3

Kaynak Göster

APA Ünal, S., Doğan, O., & Aktaş, Y. (2022). PACLITAXEL-LOADED POLYCAPROLACTONE NANOPARTICLES FOR LUNG TUMORS; FORMULATION, COMPREHENSIVE IN VITRO CHARACTERIZATION AND RELEASE KINETIC STUDIES. Journal of Faculty of Pharmacy of Ankara University, 46(3), 1009-1029. https://doi.org/10.33483/jfpau.1161238
AMA Ünal S, Doğan O, Aktaş Y. PACLITAXEL-LOADED POLYCAPROLACTONE NANOPARTICLES FOR LUNG TUMORS; FORMULATION, COMPREHENSIVE IN VITRO CHARACTERIZATION AND RELEASE KINETIC STUDIES. Ankara Ecz. Fak. Derg. Eylül 2022;46(3):1009-1029. doi:10.33483/jfpau.1161238
Chicago Ünal, Sedat, Osman Doğan, ve Yeşim Aktaş. “PACLITAXEL-LOADED POLYCAPROLACTONE NANOPARTICLES FOR LUNG TUMORS; FORMULATION, COMPREHENSIVE IN VITRO CHARACTERIZATION AND RELEASE KINETIC STUDIES”. Journal of Faculty of Pharmacy of Ankara University 46, sy. 3 (Eylül 2022): 1009-29. https://doi.org/10.33483/jfpau.1161238.
EndNote Ünal S, Doğan O, Aktaş Y (01 Eylül 2022) PACLITAXEL-LOADED POLYCAPROLACTONE NANOPARTICLES FOR LUNG TUMORS; FORMULATION, COMPREHENSIVE IN VITRO CHARACTERIZATION AND RELEASE KINETIC STUDIES. Journal of Faculty of Pharmacy of Ankara University 46 3 1009–1029.
IEEE S. Ünal, O. Doğan, ve Y. Aktaş, “PACLITAXEL-LOADED POLYCAPROLACTONE NANOPARTICLES FOR LUNG TUMORS; FORMULATION, COMPREHENSIVE IN VITRO CHARACTERIZATION AND RELEASE KINETIC STUDIES”, Ankara Ecz. Fak. Derg., c. 46, sy. 3, ss. 1009–1029, 2022, doi: 10.33483/jfpau.1161238.
ISNAD Ünal, Sedat vd. “PACLITAXEL-LOADED POLYCAPROLACTONE NANOPARTICLES FOR LUNG TUMORS; FORMULATION, COMPREHENSIVE IN VITRO CHARACTERIZATION AND RELEASE KINETIC STUDIES”. Journal of Faculty of Pharmacy of Ankara University 46/3 (Eylül 2022), 1009-1029. https://doi.org/10.33483/jfpau.1161238.
JAMA Ünal S, Doğan O, Aktaş Y. PACLITAXEL-LOADED POLYCAPROLACTONE NANOPARTICLES FOR LUNG TUMORS; FORMULATION, COMPREHENSIVE IN VITRO CHARACTERIZATION AND RELEASE KINETIC STUDIES. Ankara Ecz. Fak. Derg. 2022;46:1009–1029.
MLA Ünal, Sedat vd. “PACLITAXEL-LOADED POLYCAPROLACTONE NANOPARTICLES FOR LUNG TUMORS; FORMULATION, COMPREHENSIVE IN VITRO CHARACTERIZATION AND RELEASE KINETIC STUDIES”. Journal of Faculty of Pharmacy of Ankara University, c. 46, sy. 3, 2022, ss. 1009-2, doi:10.33483/jfpau.1161238.
Vancouver Ünal S, Doğan O, Aktaş Y. PACLITAXEL-LOADED POLYCAPROLACTONE NANOPARTICLES FOR LUNG TUMORS; FORMULATION, COMPREHENSIVE IN VITRO CHARACTERIZATION AND RELEASE KINETIC STUDIES. Ankara Ecz. Fak. Derg. 2022;46(3):1009-2.

Kapsam ve Amaç

Ankara Üniversitesi Eczacılık Fakültesi Dergisi, açık erişim, hakemli bir dergi olup Türkçe veya İngilizce olarak farmasötik bilimler alanındaki önemli gelişmeleri içeren orijinal araştırmalar, derlemeler ve kısa bildiriler için uluslararası bir yayım ortamıdır. Bilimsel toplantılarda sunulan bildiriler supleman özel sayısı olarak dergide yayımlanabilir. Ayrıca, tüm farmasötik alandaki gelecek ve önceki ulusal ve uluslararası bilimsel toplantılar ile sosyal aktiviteleri içerir.