Araştırma Makalesi
BibTex RIS Kaynak Göster

ALZHEİMER HASTALIĞI İÇİN MTDL OLARAK YENİ N'-PROPANHİDRAZİTLERİN TASARIMI, SENTEZİ VE BİYOLOJİK DEĞERLENDİRMESİ

Yıl 2024, Cilt: 48 Sayı: 3, 840 - 852, 10.09.2024
https://doi.org/10.33483/jfpau.1434552

Öz

Amaç: Bu çalışmada, çoklu hedefe yönelik ligand (MTDL) stratejisi izlenerek ve nöroprotektif ferulik asit yapısından ilham alınarak, sekiz yeni N'-(benziliden)propanhidrazit türevleri tasarlandı, sentezlendi, kolinesteraz inhibitör ve antioksidan kapasitelerini değerlendirmek üzere test edildi.
Gereç ve Yöntem: Sonuç bileşiklerin eldesi için ilk olarak, kilit ara ürünler olan 3-(amino)propanhidrazitler, metil 3-(sübstitüeamino)propanoat ara ürünlerinin hidrazin hidrat ile hidrolizinden hazırlandı. Bu ara ürünler ise metil akrilat ve ticari olarak mevcut tersiyer amin türevlerinin Michael katım tepkimesinden hazırlanmıştır. Hazırlanan kilit ara ürünlerin, seri hareket bileşikleri olan 4-hidroksibenzaldehit veya 4-metoksibenzaldehit ile katım tepkimesinden sonuç bileşikler sentezlenmiştir. Sentezlenen ve saflaştırılan bileşiklerin 1H-NMR, 13C-NMR ve HRMS analizleri ile yapı kontrolleri gerçekleştirilmiştir. Ardından, sonuç bileşiklerin modifiye Ellman yöntemiyle kolinesteraz inhibitör etki, DPPH ve ORAC yöntemleriyle antioksidan etki ve UV-spektroskopisi analiziyle de metal şelatör etki incelemeleri yapılmıştır. Ayrıca tüm bileşiklerin ilaç olabilirliklerini değerlendirebilmek amacıyla QikProp Schrodinger Suite 2023 kullanılarak fizikokimyasal parametreleri hesaplanmıştır.
Sonuç ve Tartışma: Sekiz sonuç bileşikten yedisinin değişen oranlarda kolinesteraz inhibisyonu oluşturdukları bulunmuştur. Bileşik 2a (IC50 = 12.83 µM) ve 2d (IC50 = 16.02 µM) sırasıyla en iyi asetilkolinesteraz (AChE) ve bütirilkolinesteraz (BChE) inhibitörü olarak belirlenmiştir. Bununla birlikte, ORAC testinde tüm bileşikler antioksidan etki göstermiştir. Tüm bileşiklerin Cu(II), Fe(II), ve Zn(II) iyonları için değişen oranlarda şelatör etkileri de gözlenmiştir. Ayrıca, final bileşikler, in-siliko tahminlere göre kabul edilebilir öncü benzeri özellikler göstermiştir.

Kaynakça

  • 1. Prince, M., Ali, G.C., Guerchet, M., Prina, A.M., Albanese, E.,Wu, Y.T. (2016). Recent global trends in the prevalence and incidence of dementia, and survival with dementia. Alzheimer's Research Therapy, 8(1), 23. [CrossRef]
  • 2. Jia, J., Wei, C., Chen, S., Li, F., Tang, Y., Qin, W., Gauthier, S. (2018). The cost of Alzheimer's disease in China and re-estimation of costs worldwide. Alzheimers Dement, 14(4), 483-491. [CrossRef]
  • 3. Cummings, J.L., Morstorf, T., Zhong, K. (2014). Alzheimer's disease drug-development pipeline: Few candidates, frequent failures. Alzheimer's Research Therapy, 6(4), 37. [CrossRef]
  • 4. Wimo, A., Guerchet, M., Ali, G.C., Wu, Y.T., Prina, A.M., Winblad, B., Prince, M. (2017). The worldwide costs of dementia 2015 and comparisons with 2010. Alzheimers Dementia, 13(1), 1-7. [CrossRef]
  • 5. Kumar, A., Singh, A., Ekavali. (2015). A review on Alzheimer’s disease pathophysiology and its management: an update. Pharmacological Reports, 67(2), 195-203. [CrossRef]
  • 6. DeTure, M.A., Dickson, D.W. (2019). The neuropathological diagnosis of Alzheimer’s disease. Molecular Neurodegeneration, 14(1), 32. [CrossRef]
  • 7. Blaikie, L., Kay, G., Kong Thoo Lin, P. (2019). Current and emerging therapeutic targets of Alzheimer's disease for the design of multi-target directed ligands. MedChemComm, 10(12), 2052-2072. [CrossRef]
  • 8. Querfurth, H.W., LaFerla, F.M. (2010). Alzheimer's disease. The New England Journal of Medicine, 362(4), 329-344. [CrossRef]
  • 9. Guerreiro, R., Hardy, J. (2014). Genetics of Alzheimer's disease. Neurotherapeutics, 11(4), 732-737. [CrossRef]
  • 10. Selkoe, D.J., Hardy, J. (2016). The amyloid hypothesis of Alzheimer's disease at 25 years. EMBO Molecular Medicine, 8(6), 595-608. [CrossRef]
  • 11. Neugroschl, J., Sano, M. (2009). An update on treatment and prevention strategies for Alzheimer's disease. Current Neurology and Neuroscience Reports, 9(5), 368-376. [CrossRef]
  • 12. Wichur, T., Więckowska, A., Więckowski, K., Godyń, J., Jończyk, J., Valdivieso, Á.D.R., Malawska, B. (2020). 1-Benzylpyrrolidine-3-amine-based BuChE inhibitors with anti-aggregating, antioxidant and metal-chelating properties as multifunctional agents against Alzheimer’s disease. European Journal of Medicinal Chemistry, 187, 111916. [CrossRef]
  • 13. Birks, J. (2006). Cholinesterase inhibitors for Alzheimer's disease. Cochrane Database of Systematic Reviews, 2006(1), Cd005593. [CrossRef]
  • 14. Anand, R., Gill, K.D., Mahdi, A.A. (2014). Therapeutics of Alzheimer's disease: Past, present and future. Neuropharmacology, 76 Pt A, 27-50. [CrossRef]
  • 15. Reisberg, B., Doody, R., Stöffler, A., Schmitt, F., Ferris, S., Möbius, H.J. (2003). Memantine in moderate-to-severe Alzheimer's disease. The New England Journal of Medicine, 348(14), 1333-1341. [CrossRef]
  • 16. Cummings, J., Lee, G., Ritter, A., Sabbagh, M., Zhong, K. (2019). Alzheimer's disease drug development pipeline: 2019. Alzheimer's dementia (New York, N. Y.), 5, 272-293. [CrossRef]
  • 17. Cavalli, A., Bolognesi, M.L., Minarini, A., Rosini, M., Tumiatti, V., Recanatini, M., Melchiorre, C. (2008). Multi-target-directed ligands to combat neurodegenerative diseases. Journal of Medicinal Chemistry, 51(3), 347-372. [CrossRef]
  • 18. Li, Q., Xing, S., Chen, Y., Liao, Q., Xiong, B., He, S., Sun, H. (2020). Discovery and biological evaluation of a novel highly potent selective butyrylcholinsterase inhibitor. Journal of Medicinal Chemistry, 63(17), 10030-10044. [CrossRef]
  • 19. Chen, Y., Lin, H., Yang, H., Tan, R., Bian, Y., Fu, T., Sun, H. (2017). Discovery of new acetylcholinesterase and butyrylcholinesterase inhibitors through structure-based virtual screening. RSC Advances, 7(6), 3429-3438. [CrossRef]
  • 20. Jing, L., Wu, G., Kang, D., Zhou, Z., Song, Y., Liu, X., Zhan, P. (2019). Contemporary medicinal-chemistry strategies for the discovery of selective butyrylcholinesterase inhibitors. Drug Discovery Today, 24(2), 629-635. [CrossRef]
  • 21. Panek, D., Pasieka, A., Latacz, G., Zaręba, P., Szczęch, M., Godyń, J., Malawska, B. (2023). Discovery of new, highly potent and selective inhibitors of BuChE - design, synthesis, in vitro and in vivo evaluation and crystallography studies. European Journal of Medicinal Chemistry, 249, 115135. [CrossRef]
  • 22. Zhao, Y., Zhao, B. (2013). Oxidative stress and the pathogenesis of Alzheimer's disease. Oxidative Medicine and Cellular Longevity, 2013, 316523. [CrossRef]
  • 23. Singh, A., Kukreti, R., Saso, L., Kukreti, S. (2019). Oxidative Stress: A key modulator in neurodegenerative diseases. Molecules, 24(8), 1583. [CrossRef]
  • 24. Kenche, V.B., Barnham, K.J. (2011). Alzheimer's disease metals: Therapeutic opportunities. British Journal of Pharmacology, 163(2), 211-219. [CrossRef]
  • 25. Yamali, C., Gulcan, H. O., Kahya, B., Cobanoglu, S., Sukuroglu, M.K., Dogruer, D.S. (2015). Synthesis of some 3(2H)-pyridazinone and 1(2H)-phthalazinone derivatives incorporating aminothiazole moiety and investigation of their antioxidant, acetylcholinesterase, and butyrylcholinesterase inhibitory activities. Medicinal Chemistry Research, 24(3), 1210-1217. [CrossRef]
  • 26. Kilic, B., Gulcan, H.O., Yalcın, M., Aksakal, F., Dimoglo, A., Sahin, M.F., Dogruer, D.S. (2017). Synthesis of some new 1(2h)-phthalazinone derivatives and evaluation of their acetylcholinesterase and butyrylcholinesterase inhibitory activities. Letters Drug Design and Discovery, 14(2), 159-166. [CrossRef]
  • 27. Kilic, B., Gulcan, H.O., Aksakal, F., Ercetin, T., Oruklu, N., Umit Bagriacik, E., Dogruer, D.S. (2018). Design and synthesis of some new carboxamide and propanamide derivatives bearing phenylpyridazine as a core ring and the investigation of their inhibitory potential on in-vitro acetylcholinesterase and butyrylcholinesterase. Bioorganic Chemistry, 79, 235-249. [CrossRef]
  • 28. Kilic, B., Erdogan, M., Gulcan, H.O., Aksakarl, F., Oruklu, N., Bagriacik, E.U., Dogruer, D.S. (2019). Design, synthesis and investigation of new diphenyl substituted pyridazinone derivatives as both cholinesterase and a beta-aggregation inhibitors. Medicinal Chemistry, 15(1), 59-76. [CrossRef]
  • 29. Kilic, B., Bardakkaya, M., Ilıkcı Sagkan, R., Aksakal, F., Shakila, S., Dogruer, D.S. (2023). New thiourea and benzamide derivatives of 2-aminothiazole as multi-target agents against Alzheimer's disease: Design, synthesis, and biological evaluation. Bioorganic Chemistry, 131, 106322. [CrossRef]
  • 30. Erdogan, M., Kilic, B., Sagkan, R.I., Aksakal, F., Ercetin, T., Gulcan, H.O., Dogruer, D.S. (2021). Design, synthesis and biological evaluation of new benzoxazolone/benzothiazolone derivatives as multi-target agents against Alzheimer's disease. European Journal of Medicinal Chemistry, 212, 113124. [CrossRef]
  • 31. Bardakkaya, M., Kilic, B., Sagkan, R.I., Aksakal, F., Shakila, S., Dogruer, D.S. (2023). Synthesis and evaluation of multitarget new 2-aminothiazole derivatives as potential anti-Alzheimer's agents. Archiv der Pharmazie, 356(8), 2300054. [CrossRef]
  • 32. Yin, C., Lu, R., Zhu, J., Huang, H., Liu, X., Li, Q., Wu, J. (2019). The study of neuroprotective effect of ferulic acid based on cell metabolomics. European Journal of Pharmacology, 864, 172694. [CrossRef]
  • 33. Singh, Y.P., Rai, H., Singh, G., Singh, G.K., Mishra, S., Kumar, S., Modi, G. (2021). A review on ferulic acid and analogs based scaffolds for the management of Alzheimer’s disease. European Journal of Medicinal Chemistry, 215, 113278. [CrossRef]
  • 34. Zhu, J., Yang, H., Chen, Y., Lin, H., Li, Q., Mo, J., Sun, H. (2018). Synthesis, pharmacology and molecular docking on multifunctional tacrine-ferulic acid hybrids as cholinesterase inhibitors against Alzheimer’s disease. Journal of Enzyme Inhibition and Medicinal Chemistry, 33(1), 496-506. [CrossRef]
  • 35. Mo, J., Yang, H., Chen, T., Li, Q., Lin, H., Feng, F., Sun, H. (2019). Design, synthesis, biological evaluation, and molecular modeling studies of quinoline-ferulic acid hybrids as cholinesterase inhibitors. Bioorganic Chemistry, 93, 103310. [CrossRef]
  • 36. Bajda, M., Wieckowska, A., Hebda, M., Guzior, N., Sotriffer, C.A., Malawska, B. (2013). Structure-based search for new inhibitors of cholinesterases. International Journal of Molecular Sciences, 14(3), 5608-5632. [CrossRef]
  • 37. Abouel-Enein, S.A., Emam, S.M., Abdel-Satar, E.M. (2023). Bivalent metal chelates with pentadentate azo-schiff base derived from nicotinic hydrazide: Preparation, structural elucidation, and pharmacological activity. Chemistry Biodiversity, 20(6), e202201223. [CrossRef]
  • 38. Anand, P., Singh, B. (2013). A review on cholinesterase inhibitors for Alzheimer's disease. Archives of Pharmacal Research, 36(4), 375-399. [CrossRef]
  • 39. Rice-Evans, C.A., Miller, N.J., Paganga, G. (1996). Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Biology and Medicine, 20(7), 933-956. [CrossRef]
  • 40. Miller, N.J., Rice-Evans, C., Davies, M.J., Gopinathan, V., Milner, A. (1993). A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clinical Science, 84(4), 407-412. [CrossRef]
  • 41. Bortolami, M., Pandolfi, F., De Vita, D., Carafa, C., Messore, A., Di Santo, R., Scipione, L. (2020). New deferiprone derivatives as multi-functional cholinesterase inhibitors: design, synthesis and in vitro evaluation. European Journal of Medicinal Chemistry, 198, 112350. [CrossRef]
  • 42. Schrödinger Release 2023-2: QikProp, Schrödinger, LLC, New York, NY, 2023.
  • 43. Lipinski, C.A., Lombardo, F., Dominy, B. W., Feeney, P.J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings1PII of original article: S0169-409X(96)00423-1. The article was originally published in Advanced Drug Delivery Reviews 23 (1997) 3-25.1. Advanced Drug Delivery Reviews, 46(1), 3-26. [CrossRef]
  • 44. Jorgensen, W.L., Duffy, E.M. (2002). Prediction of drug solubility from structure. Advanced Drug Delivery Reviews, 54(3), 355-366. [CrossRef]

DESIGN, SYNTHESIS, AND BIOLOGICAL ASSESSMENT OF NOVEL N'-(BENZYLIDENE)PROPANEHYDRAZIDES AS MTDL FOR ALZHEIMER’S DISEASE

Yıl 2024, Cilt: 48 Sayı: 3, 840 - 852, 10.09.2024
https://doi.org/10.33483/jfpau.1434552

Öz

Objective: In this study, following the multi-target directed ligands (MTDLs) strategy and drawing inspiration from the neuroprotective structure of ferulic acid, eight novel N'-(benzylidene)propanehydrazide derivatives were designed, synthesized, and tested to evaluate their cholinesterase inhibitory and antioxidant capacities.
Material and Method: To obtain the final compounds, first, corresponding key intermediates, 3-(substitutedamino)propanehydrazides, were prepared by the hydrolysis with hydrazine hydrate of methyl 3-(substitutedamino)propanoate intermediates. These intermediates had been prepared from the Michael addition of methyl acrylate and commercially available tertiary amine derivatives. Subsequently, the final compounds were synthesized from the reaction of the starting compounds 4-hydroxybenzaldehyde or 4-methoxybenzaldehyde and the corresponding key intermediates. Structural analysis of the synthesized and purified compounds was carried out using 1H-NMR, 13C-NMR, and HRMS. Then, all the final compounds were examined for their cholinesterase inhibitory effect using the modified Ellman method, their antioxidant effect using the DPPH and ORAC methods, and their metal chelator effect using UV-spectroscopy analysis. Moreover, physicochemical parameters were calculated using QikProp Schrödinger Suite 2023 to predict the druggability of all compounds.
Result and Discussion: Seven of the eight final compounds exhibited moderate cholinesterase inhibition at varying rates. Compounds 2a (IC50 = 12.83 µM) and 2d (IC50 = 16.02 µM) were identified as the most potent inhibitors for acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), respectively. Moreover, all the final compounds exhibited antioxidant activity in the ORAC assay. Chelator effects of all compounds were also observed for Cu(II), Fe(II), and Zn(II) ions at varying rates. Additionally, the final compounds demonstrated acceptable lead-like properties according to in-silico predictions.

Etik Beyan

ETHICS COMMITTEE APPROVAL The author declares that ethics committee approval is not required for this study.

Teşekkür

The author is grateful to Prof. Dr. Deniz S. Doğruer for her support and advice during this research.

Kaynakça

  • 1. Prince, M., Ali, G.C., Guerchet, M., Prina, A.M., Albanese, E.,Wu, Y.T. (2016). Recent global trends in the prevalence and incidence of dementia, and survival with dementia. Alzheimer's Research Therapy, 8(1), 23. [CrossRef]
  • 2. Jia, J., Wei, C., Chen, S., Li, F., Tang, Y., Qin, W., Gauthier, S. (2018). The cost of Alzheimer's disease in China and re-estimation of costs worldwide. Alzheimers Dement, 14(4), 483-491. [CrossRef]
  • 3. Cummings, J.L., Morstorf, T., Zhong, K. (2014). Alzheimer's disease drug-development pipeline: Few candidates, frequent failures. Alzheimer's Research Therapy, 6(4), 37. [CrossRef]
  • 4. Wimo, A., Guerchet, M., Ali, G.C., Wu, Y.T., Prina, A.M., Winblad, B., Prince, M. (2017). The worldwide costs of dementia 2015 and comparisons with 2010. Alzheimers Dementia, 13(1), 1-7. [CrossRef]
  • 5. Kumar, A., Singh, A., Ekavali. (2015). A review on Alzheimer’s disease pathophysiology and its management: an update. Pharmacological Reports, 67(2), 195-203. [CrossRef]
  • 6. DeTure, M.A., Dickson, D.W. (2019). The neuropathological diagnosis of Alzheimer’s disease. Molecular Neurodegeneration, 14(1), 32. [CrossRef]
  • 7. Blaikie, L., Kay, G., Kong Thoo Lin, P. (2019). Current and emerging therapeutic targets of Alzheimer's disease for the design of multi-target directed ligands. MedChemComm, 10(12), 2052-2072. [CrossRef]
  • 8. Querfurth, H.W., LaFerla, F.M. (2010). Alzheimer's disease. The New England Journal of Medicine, 362(4), 329-344. [CrossRef]
  • 9. Guerreiro, R., Hardy, J. (2014). Genetics of Alzheimer's disease. Neurotherapeutics, 11(4), 732-737. [CrossRef]
  • 10. Selkoe, D.J., Hardy, J. (2016). The amyloid hypothesis of Alzheimer's disease at 25 years. EMBO Molecular Medicine, 8(6), 595-608. [CrossRef]
  • 11. Neugroschl, J., Sano, M. (2009). An update on treatment and prevention strategies for Alzheimer's disease. Current Neurology and Neuroscience Reports, 9(5), 368-376. [CrossRef]
  • 12. Wichur, T., Więckowska, A., Więckowski, K., Godyń, J., Jończyk, J., Valdivieso, Á.D.R., Malawska, B. (2020). 1-Benzylpyrrolidine-3-amine-based BuChE inhibitors with anti-aggregating, antioxidant and metal-chelating properties as multifunctional agents against Alzheimer’s disease. European Journal of Medicinal Chemistry, 187, 111916. [CrossRef]
  • 13. Birks, J. (2006). Cholinesterase inhibitors for Alzheimer's disease. Cochrane Database of Systematic Reviews, 2006(1), Cd005593. [CrossRef]
  • 14. Anand, R., Gill, K.D., Mahdi, A.A. (2014). Therapeutics of Alzheimer's disease: Past, present and future. Neuropharmacology, 76 Pt A, 27-50. [CrossRef]
  • 15. Reisberg, B., Doody, R., Stöffler, A., Schmitt, F., Ferris, S., Möbius, H.J. (2003). Memantine in moderate-to-severe Alzheimer's disease. The New England Journal of Medicine, 348(14), 1333-1341. [CrossRef]
  • 16. Cummings, J., Lee, G., Ritter, A., Sabbagh, M., Zhong, K. (2019). Alzheimer's disease drug development pipeline: 2019. Alzheimer's dementia (New York, N. Y.), 5, 272-293. [CrossRef]
  • 17. Cavalli, A., Bolognesi, M.L., Minarini, A., Rosini, M., Tumiatti, V., Recanatini, M., Melchiorre, C. (2008). Multi-target-directed ligands to combat neurodegenerative diseases. Journal of Medicinal Chemistry, 51(3), 347-372. [CrossRef]
  • 18. Li, Q., Xing, S., Chen, Y., Liao, Q., Xiong, B., He, S., Sun, H. (2020). Discovery and biological evaluation of a novel highly potent selective butyrylcholinsterase inhibitor. Journal of Medicinal Chemistry, 63(17), 10030-10044. [CrossRef]
  • 19. Chen, Y., Lin, H., Yang, H., Tan, R., Bian, Y., Fu, T., Sun, H. (2017). Discovery of new acetylcholinesterase and butyrylcholinesterase inhibitors through structure-based virtual screening. RSC Advances, 7(6), 3429-3438. [CrossRef]
  • 20. Jing, L., Wu, G., Kang, D., Zhou, Z., Song, Y., Liu, X., Zhan, P. (2019). Contemporary medicinal-chemistry strategies for the discovery of selective butyrylcholinesterase inhibitors. Drug Discovery Today, 24(2), 629-635. [CrossRef]
  • 21. Panek, D., Pasieka, A., Latacz, G., Zaręba, P., Szczęch, M., Godyń, J., Malawska, B. (2023). Discovery of new, highly potent and selective inhibitors of BuChE - design, synthesis, in vitro and in vivo evaluation and crystallography studies. European Journal of Medicinal Chemistry, 249, 115135. [CrossRef]
  • 22. Zhao, Y., Zhao, B. (2013). Oxidative stress and the pathogenesis of Alzheimer's disease. Oxidative Medicine and Cellular Longevity, 2013, 316523. [CrossRef]
  • 23. Singh, A., Kukreti, R., Saso, L., Kukreti, S. (2019). Oxidative Stress: A key modulator in neurodegenerative diseases. Molecules, 24(8), 1583. [CrossRef]
  • 24. Kenche, V.B., Barnham, K.J. (2011). Alzheimer's disease metals: Therapeutic opportunities. British Journal of Pharmacology, 163(2), 211-219. [CrossRef]
  • 25. Yamali, C., Gulcan, H. O., Kahya, B., Cobanoglu, S., Sukuroglu, M.K., Dogruer, D.S. (2015). Synthesis of some 3(2H)-pyridazinone and 1(2H)-phthalazinone derivatives incorporating aminothiazole moiety and investigation of their antioxidant, acetylcholinesterase, and butyrylcholinesterase inhibitory activities. Medicinal Chemistry Research, 24(3), 1210-1217. [CrossRef]
  • 26. Kilic, B., Gulcan, H.O., Yalcın, M., Aksakal, F., Dimoglo, A., Sahin, M.F., Dogruer, D.S. (2017). Synthesis of some new 1(2h)-phthalazinone derivatives and evaluation of their acetylcholinesterase and butyrylcholinesterase inhibitory activities. Letters Drug Design and Discovery, 14(2), 159-166. [CrossRef]
  • 27. Kilic, B., Gulcan, H.O., Aksakal, F., Ercetin, T., Oruklu, N., Umit Bagriacik, E., Dogruer, D.S. (2018). Design and synthesis of some new carboxamide and propanamide derivatives bearing phenylpyridazine as a core ring and the investigation of their inhibitory potential on in-vitro acetylcholinesterase and butyrylcholinesterase. Bioorganic Chemistry, 79, 235-249. [CrossRef]
  • 28. Kilic, B., Erdogan, M., Gulcan, H.O., Aksakarl, F., Oruklu, N., Bagriacik, E.U., Dogruer, D.S. (2019). Design, synthesis and investigation of new diphenyl substituted pyridazinone derivatives as both cholinesterase and a beta-aggregation inhibitors. Medicinal Chemistry, 15(1), 59-76. [CrossRef]
  • 29. Kilic, B., Bardakkaya, M., Ilıkcı Sagkan, R., Aksakal, F., Shakila, S., Dogruer, D.S. (2023). New thiourea and benzamide derivatives of 2-aminothiazole as multi-target agents against Alzheimer's disease: Design, synthesis, and biological evaluation. Bioorganic Chemistry, 131, 106322. [CrossRef]
  • 30. Erdogan, M., Kilic, B., Sagkan, R.I., Aksakal, F., Ercetin, T., Gulcan, H.O., Dogruer, D.S. (2021). Design, synthesis and biological evaluation of new benzoxazolone/benzothiazolone derivatives as multi-target agents against Alzheimer's disease. European Journal of Medicinal Chemistry, 212, 113124. [CrossRef]
  • 31. Bardakkaya, M., Kilic, B., Sagkan, R.I., Aksakal, F., Shakila, S., Dogruer, D.S. (2023). Synthesis and evaluation of multitarget new 2-aminothiazole derivatives as potential anti-Alzheimer's agents. Archiv der Pharmazie, 356(8), 2300054. [CrossRef]
  • 32. Yin, C., Lu, R., Zhu, J., Huang, H., Liu, X., Li, Q., Wu, J. (2019). The study of neuroprotective effect of ferulic acid based on cell metabolomics. European Journal of Pharmacology, 864, 172694. [CrossRef]
  • 33. Singh, Y.P., Rai, H., Singh, G., Singh, G.K., Mishra, S., Kumar, S., Modi, G. (2021). A review on ferulic acid and analogs based scaffolds for the management of Alzheimer’s disease. European Journal of Medicinal Chemistry, 215, 113278. [CrossRef]
  • 34. Zhu, J., Yang, H., Chen, Y., Lin, H., Li, Q., Mo, J., Sun, H. (2018). Synthesis, pharmacology and molecular docking on multifunctional tacrine-ferulic acid hybrids as cholinesterase inhibitors against Alzheimer’s disease. Journal of Enzyme Inhibition and Medicinal Chemistry, 33(1), 496-506. [CrossRef]
  • 35. Mo, J., Yang, H., Chen, T., Li, Q., Lin, H., Feng, F., Sun, H. (2019). Design, synthesis, biological evaluation, and molecular modeling studies of quinoline-ferulic acid hybrids as cholinesterase inhibitors. Bioorganic Chemistry, 93, 103310. [CrossRef]
  • 36. Bajda, M., Wieckowska, A., Hebda, M., Guzior, N., Sotriffer, C.A., Malawska, B. (2013). Structure-based search for new inhibitors of cholinesterases. International Journal of Molecular Sciences, 14(3), 5608-5632. [CrossRef]
  • 37. Abouel-Enein, S.A., Emam, S.M., Abdel-Satar, E.M. (2023). Bivalent metal chelates with pentadentate azo-schiff base derived from nicotinic hydrazide: Preparation, structural elucidation, and pharmacological activity. Chemistry Biodiversity, 20(6), e202201223. [CrossRef]
  • 38. Anand, P., Singh, B. (2013). A review on cholinesterase inhibitors for Alzheimer's disease. Archives of Pharmacal Research, 36(4), 375-399. [CrossRef]
  • 39. Rice-Evans, C.A., Miller, N.J., Paganga, G. (1996). Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Biology and Medicine, 20(7), 933-956. [CrossRef]
  • 40. Miller, N.J., Rice-Evans, C., Davies, M.J., Gopinathan, V., Milner, A. (1993). A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clinical Science, 84(4), 407-412. [CrossRef]
  • 41. Bortolami, M., Pandolfi, F., De Vita, D., Carafa, C., Messore, A., Di Santo, R., Scipione, L. (2020). New deferiprone derivatives as multi-functional cholinesterase inhibitors: design, synthesis and in vitro evaluation. European Journal of Medicinal Chemistry, 198, 112350. [CrossRef]
  • 42. Schrödinger Release 2023-2: QikProp, Schrödinger, LLC, New York, NY, 2023.
  • 43. Lipinski, C.A., Lombardo, F., Dominy, B. W., Feeney, P.J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings1PII of original article: S0169-409X(96)00423-1. The article was originally published in Advanced Drug Delivery Reviews 23 (1997) 3-25.1. Advanced Drug Delivery Reviews, 46(1), 3-26. [CrossRef]
  • 44. Jorgensen, W.L., Duffy, E.M. (2002). Prediction of drug solubility from structure. Advanced Drug Delivery Reviews, 54(3), 355-366. [CrossRef]
Toplam 44 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Farmasotik Kimya
Bölüm Araştırma Makalesi
Yazarlar

Burcu Kılıç 0000-0001-8737-829X

Erken Görünüm Tarihi 25 Haziran 2024
Yayımlanma Tarihi 10 Eylül 2024
Gönderilme Tarihi 11 Şubat 2024
Kabul Tarihi 4 Haziran 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 48 Sayı: 3

Kaynak Göster

APA Kılıç, B. (2024). DESIGN, SYNTHESIS, AND BIOLOGICAL ASSESSMENT OF NOVEL N’-(BENZYLIDENE)PROPANEHYDRAZIDES AS MTDL FOR ALZHEIMER’S DISEASE. Journal of Faculty of Pharmacy of Ankara University, 48(3), 840-852. https://doi.org/10.33483/jfpau.1434552
AMA Kılıç B. DESIGN, SYNTHESIS, AND BIOLOGICAL ASSESSMENT OF NOVEL N’-(BENZYLIDENE)PROPANEHYDRAZIDES AS MTDL FOR ALZHEIMER’S DISEASE. Ankara Ecz. Fak. Derg. Eylül 2024;48(3):840-852. doi:10.33483/jfpau.1434552
Chicago Kılıç, Burcu. “DESIGN, SYNTHESIS, AND BIOLOGICAL ASSESSMENT OF NOVEL N’-(BENZYLIDENE)PROPANEHYDRAZIDES AS MTDL FOR ALZHEIMER’S DISEASE”. Journal of Faculty of Pharmacy of Ankara University 48, sy. 3 (Eylül 2024): 840-52. https://doi.org/10.33483/jfpau.1434552.
EndNote Kılıç B (01 Eylül 2024) DESIGN, SYNTHESIS, AND BIOLOGICAL ASSESSMENT OF NOVEL N’-(BENZYLIDENE)PROPANEHYDRAZIDES AS MTDL FOR ALZHEIMER’S DISEASE. Journal of Faculty of Pharmacy of Ankara University 48 3 840–852.
IEEE B. Kılıç, “DESIGN, SYNTHESIS, AND BIOLOGICAL ASSESSMENT OF NOVEL N’-(BENZYLIDENE)PROPANEHYDRAZIDES AS MTDL FOR ALZHEIMER’S DISEASE”, Ankara Ecz. Fak. Derg., c. 48, sy. 3, ss. 840–852, 2024, doi: 10.33483/jfpau.1434552.
ISNAD Kılıç, Burcu. “DESIGN, SYNTHESIS, AND BIOLOGICAL ASSESSMENT OF NOVEL N’-(BENZYLIDENE)PROPANEHYDRAZIDES AS MTDL FOR ALZHEIMER’S DISEASE”. Journal of Faculty of Pharmacy of Ankara University 48/3 (Eylül 2024), 840-852. https://doi.org/10.33483/jfpau.1434552.
JAMA Kılıç B. DESIGN, SYNTHESIS, AND BIOLOGICAL ASSESSMENT OF NOVEL N’-(BENZYLIDENE)PROPANEHYDRAZIDES AS MTDL FOR ALZHEIMER’S DISEASE. Ankara Ecz. Fak. Derg. 2024;48:840–852.
MLA Kılıç, Burcu. “DESIGN, SYNTHESIS, AND BIOLOGICAL ASSESSMENT OF NOVEL N’-(BENZYLIDENE)PROPANEHYDRAZIDES AS MTDL FOR ALZHEIMER’S DISEASE”. Journal of Faculty of Pharmacy of Ankara University, c. 48, sy. 3, 2024, ss. 840-52, doi:10.33483/jfpau.1434552.
Vancouver Kılıç B. DESIGN, SYNTHESIS, AND BIOLOGICAL ASSESSMENT OF NOVEL N’-(BENZYLIDENE)PROPANEHYDRAZIDES AS MTDL FOR ALZHEIMER’S DISEASE. Ankara Ecz. Fak. Derg. 2024;48(3):840-52.

Kapsam ve Amaç

Ankara Üniversitesi Eczacılık Fakültesi Dergisi, açık erişim, hakemli bir dergi olup Türkçe veya İngilizce olarak farmasötik bilimler alanındaki önemli gelişmeleri içeren orijinal araştırmalar, derlemeler ve kısa bildiriler için uluslararası bir yayım ortamıdır. Bilimsel toplantılarda sunulan bildiriler supleman özel sayısı olarak dergide yayımlanabilir. Ayrıca, tüm farmasötik alandaki gelecek ve önceki ulusal ve uluslararası bilimsel toplantılar ile sosyal aktiviteleri içerir.