Derleme
BibTex RIS Kaynak Göster

FDA APPROVED ANTIDEPRESSANTS AND NEW ANTIDEPRESSANT DRUG DEVELOPMENT STUDIES BETWEEN 2013-2024

Yıl 2025, Cilt: 49 Sayı: 1, 184 - 197, 20.01.2025
https://doi.org/10.33483/jfpau.1487644

Öz

Objective: Depression is a psychiatric illness that can occur at any time of a person's life. Antidepressants are medications used in the first-line treatment of depression. Treatment of depression with antidepressants can be unfavorable due to the long duration of treatment, the development of resistance to treatment and the occurrence of side effects in the patient after taking antidepressants. Improvements to existing antidepressants are essential to increase the success rate of treatment.
Result and Discussion: One of the aims of drug research and development is to ensure more efficient use of drugs. When the antidepressants approved by the FDA in the last 11 years are analyzed, it is seen that most of the studies were carried out by preparing different dosage forms of previously developed drugs, using a specific isomer or developing allopregnanolone-like substances, which is a steroidal neuroactive substance.

Kaynakça

  • 1. Dean, J., Keshavan, M. (2017). The neurobiology of depression: An integrated view. Asian Journal of Psychiatry, 27, 101-111. [CrossRef]
  • 2. Yüzbaşıoğlu, D., Avuloğlu, Y.E., Ünal, F. (2016). Antidepresan ilaçlar ve genotoksisite. TÜBAV Bilim Dergisi, 9(1), 17-28.
  • 3. Uluğ, B., Özyüksel, B. (2007). Depresyon tanısı alan hastalarda kalıntı belirtilerin yetiyitimi ile ilişkisi: 3 aylık izlem çalışması. Türk Psikiyatri Dergisi, 18(4), 23-329.
  • 4. Zheng, Y., Chang, X., Huang, Y., He, D. (2023). The application of antidepressant drugs in cancer treatment. Biomedicine and Pharmacotherapy, 157, 113985. [CrossRef]
  • 5. Temel, M.K. (2019). Modern psikososyoklinik etmenlerin eseri “Antidepresan kullanım bozukluğu” tıp etiğince sorun teşkil eden bir olgu. Anadolu Kliniği Tıp Bilimleri Dergisi, 24(3), 206-216.
  • 6. Erdoğan, Ç., Rezaki, Ö.H., Koçak, M.O., Buturak, V.Ş. (2020). Farklı etki mekanizmasına sahip antidepresanların etkinlik, bilişsel işlevler ve yan etki açısından karşılaştırılması. Türk Psikiyatri Dergisi, 31(2), 90-98.
  • 7. Artigas, F., Nutt, D.J., Shelton, R. (2002). Mechansim of action of antidepressants. Psychopharmacology Bulletin, 36(2), 123-132.
  • 8. Jaime, B.H., Sánchez-Salcedo, J.A., Estevez-Cabrera, M.M., Jiménez, T.M., Cortes-Altamirano, J.L., Rodríguez, A.A. (2022). Depression and pain: Use of antidepressants. Current Neuropharmacology, 20(2), 384-402. [CrossRef]
  • 9. de Oliveira Costa, J., Gillies, M.B., Pearson, S.A. (2022). Changes in antidepressant use in Australia: A nationwide analysis (2015–2021). Australian and New Zealand Journal of Psychiatry, 57(1), 49-57. [CrossRef]
  • 10. Kornhuber, J., Gulbins, E. (2021). New molecular targets for antidepressant drugs. Pharmaceuticals, 14(9), 894. [CrossRef]
  • 11. Voineskos, D., Daskalakis, Z.J., Blumberger, D.M. (2020). Management of treatment-resistant depression: Challenges and strategies. Neuropsychiatric Disease and Treatment, 16, 221-234. [CrossRef]
  • 12. Keam, S.J. (2023). Gepirone extended-release: First approval drugs. Adis Journals, 83(18), 1723-8. [CrossRef]
  • 13. Yocca, F.D. (1990). Neurochemistry and neurophysiology of buspirone and gepirone: Interactions at presynaptic and postsynaptic 5-HT1A receptors. Journal of Clinical Psychopharmacology, 10(3), 6-12. [CrossRef]
  • 14. Wang, Y.T., Yang, P.C., Zhang, Y.F., Sun, J.F. (2024). Synthesis and clinical application of new drugs approved by FDA in 2023. European Journal of Medicinal Chemistry, 265, 116124. [CrossRef]
  • 15. Shin, C., Ko, Y.H., Shim, S.H., Kim, J.S., Na, K.S., Hahn, S.W., Lee, S.H. (2020). Efficacy of buspirone augmentation of escitalopram in patients with major depressive disorder with and without atypical features: A randomized, 8 week, multicenter, open-label clinical trial. Psychiatry Investigation, 17(8), 796-803. [CrossRef]
  • 16. Engin, E., Benham, R.S., Rudolph, U. (2018). An emerging circuit pharmacology of GABAA receptors. Trends in Pharmacological Sciences, 39(8), 710-732. [CrossRef]
  • 17. Frieder, A., Fersh, M., Hainline, R., Deligiannidis, K.M. (2019). Pharmacotherapy of postpartum depression: Current approaches and novel drug development. CNS Drugs, 33(3), 265-282. [CrossRef]
  • 18. Hosie, A.M., Wilkins, M.E., Da Silva, H.M.A., Smart, T.G. (2006). Endogenous neurosteroids regulate GABAA receptors through two discrete transmembrane sites. Nature, 444, 486-489. [CrossRef]
  • 19. Reddy, D.S. (2010). Neurosteroids: Endogenous role in the human brain and therapeutic potentials. Progress in Brain Research, 186, 113-137. [CrossRef]
  • 20. Bäckström, T., Das, R., Bixo, M. (2022). Positive GABAA receptor modulating steroids and their antagonists: Implications for clinical treatments. Journal Neuroendocrinology, 34(2), e13013. [CrossRef]
  • 21. Agis-Balboa, R.C., Guidotti, A., Pinna, G. (2014). 5α-reductase type I expression is downregulated in the prefrontal cortex/brodmann’s area 9 (BA9) of depressed patients. Psychopharmacology, 231(17), 3569-3580. [CrossRef]
  • 22. Patatanian, E., Nguyen, D.R. (2022). Brexanolone: A novel drug for the treatment of postpartum depression. Journal Pharmacy Practice, 35(3), 431-436. [CrossRef]
  • 23. Erol, A. (2013). Tedaviye dirençli tek uçlu depresyonda ilaç seçimini etkileyen etmenler. Journal of Mood Disorders, 3(1), 7-8.
  • 24. Ionescu, D.F., Rosenbaum, J.F., Alpert, J.E. (2015). Pharmacological approaches to the challenge of treatment-resistant depression. Dialogues Clinical Neuroscience, 17(2), 111-126. [CrossRef]
  • 25. Sanacora, G., Frye, M.A., McDonald, W., Mathew, S.J., Turner, M.S., Schatzberg, A.F., Summergard, P., Nemeroff, C.B. (2017). A consensus statement on the use of ketamine in the treatment of mood disorders. JAMA Psychiatry, 74(4), 399-405. [CrossRef]
  • 26. Zhang, J.C., Li, S. X., Hashimoto, K. (2014). R (−)-ketamine shows greater potency and longer lasting antidepressant effects than S (+)-ketamine. Pharmacology Biochemistry and Behavior, 116, 137-41. [CrossRef]
  • 27. Kim, J., Farchione, T., Potter, A., Chen, Q., Temple, R. (2019). Esketamine for treatment-resistant depression-first FDA-approved antidepressant in a new class. The New England Journal of Medicine, 381(1), 1-4. [CrossRef]
  • 28. D’Agostino, A., English, C.D., Rey, J.A. (2015). Vortioxetine (Brintellix): A new serotonergic antidepressant. Pharmacy and Therapeutics, 40(1), 36-40.
  • 29. Pearce, E.F., Murphy, J.A. (2014). Vortioxetine for the treatment of depression. Annals of Pharmacotherapy, 48(6), 758-765. [CrossRef]
  • 30. Bang-Andersen, B., Ruhland, T., Jørgensen, M., Smith, G., Frederiksen, K., Jensen, K.G., Zhong, H., Nielsen, S.M., Hogg, S., Mørk, A., Stensbøl, T.B. (2011). Discovery of 1-[2-(2,4-dimethylphenylsulfanyl)phenyl]piperazine (Lu AA21004): A novel multimodal compound for the treatment of major depressive disorder. Journal of Medicinal Chemistry, 54(9), 3206-3221. [CrossRef]
  • 31. Schatzberg, A.F., Blier, P., Culpepper, L., Jain, R., Papakostas, G.I., Thase, M.E. (2014). An overview of vortioxetine. Journal of Clinical Psychiatry, 75(12), 1411-1418. [CrossRef]
  • 32. U.S. Food and Drug Web site. (2024). Erişim adresi: https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=204168. Erişim tarihi: 26.01.2024.
  • 33. Asnis, G.M., Henderson, M.A. (2015). Levomilnacipran for the treatment of major depressive disorder: A review. Neuropsychiatric Disease and Treatment, 11, 125-135. [CrossRef]
  • 34. Kishi, T., Ikuta, T., Sakuma, K., Okuya, M., Hatano, M., Matsuda, Y., Iwata, N. (2023). Antidepressants for the treatment of adults with major depressive disorder in the maintenance phase: A systematic review and network meta-analysis. Molecular Psychiatry, 28(1), 402-409. [CrossRef]
  • 35. Saraceni, M.M., Venci, J.V., Gandhi, M.A. (2014). Levomilnacipran (fetzima): A new serotonin-norepinephrine reuptake inhibitor for the treatment of major depressive disorder. Journal of Pharmacy Practice, 27(4), 389-395. [CrossRef]
  • 36. Wu, Y., Zhu, Z., Lan, T., Li, S., Li, Y., Wang, C., Feng, Y., Mao, X., Yu, Ş. (2023). Levomilnacipran improves lipopolysaccharide-induced dysregulation of synaptic plasticity and depression-like behaviors via activating BDNF/TrkB mediated PI3K/Akt/mTOR signaling pathway. Molecular Neurobiology, 61(7), 4102-4115. [CrossRef]
  • 37. Chilmonczyk Z., Krajewski K., Cybulski J. (2002). Rigid analogues of buspirone and gepirone, 5-HT1A receptors partial agonists. Il Farmaco, 57(11), 917-923. [CrossRef]
  • 38. Paluchowska, M.H., Bugno, R., Bojarski, A.J., Charakchieva-Minol, S., Duszyńska, B., Tatarczyńska, E., Kłodzińska, A., Stachowicz, K., Chojnacka-Wójcik, E. (2005). Novel, flexible, and conformationally defined analogs of gepirone: Synthesis and 5-HT1A, 5-HT2A, and D2 receptor activity. Bioorganic and Medicinal Chemistry, 13(4), 1195-1200. [CrossRef]
  • 39. Paul, S.M., Purdy, R.H. (1992). Neuroactive steroids. Federation of American Societies for Experimental Biology Journal, 6(6), 2311-2322. [CrossRef]
  • 40. Lambert, J.J., Belelli, D., Harney, S.C., Peters, J.A., Frenguelli, B.G. (2001). Modulation of native and recombinant GABAA receptors by endogenous and synthetic neuroactive steroids. Brain Research Reviews, 37(1-3), 68-80. [CrossRef]
  • 41. de la Torre, B.G., Albericio, F. (2023). The pharmaceutical industry in 2022: An analysis of FDA drug approvals from the perspective of molecules. Molecules, 28(3), 1038. [CrossRef]
  • 42. Slavíková, B., Bujons, J., Matyáš, L., Vidal, M., Babot, Z., Krištofíková, Z., Sunol, C., Kasal, A. (2013). Allopregnanolone and pregnanolone analogues modified in the C ring: Synthesis and activity. Journal of Medicinal Chemistry, 56(6), 2323-2336. [CrossRef]
  • 43. Xu, L., Ma, J., Shi, L., Li, F. (2023). Design, synthesis and characterizations of prodrugs of brexanolone. Bioorganic and Medicinal Chemistry Letters, 90, 129344. [CrossRef]
  • 44. Rafało-Ulińska, A., Brański, P., Pałucha-Poniewiera, A. (2022). Combined administration of (R)-ketamine and the mGlu2/3 receptor antagonist LY341495 induces rapid and sustained effects in the CUMS model of depression via a TrkB/BDNF-dependent mechanism. Pharmaceuticals, 15(2), 125. [CrossRef]
  • 45. Zhang, K., Yao, Y., Hashimoto, K. (2023). Ketamine and its metabolites: Potential as novel treatments for depression. Neuropharmacology, 222, 109305. [CrossRef]
  • 46. Johnston, J.N, Henter, I.D, Zarate, C.A. (2023). The antidepressant actions of ketamine and its enantiomers. Pharmacology and Therapeutics, 246, 108431. [CrossRef]
  • 47. Morris, P.J., Moaddel, R., Zanos, P., Moore, C.E., Gould, T., Zarate, C.A., Thomas, C.J. (2017). Synthesis and N-Methyl-D-aspartate (NMDA) receptor activity of ketamine metabolites. Organic Letters Journal, 19(17), 4572. [CrossRef]
  • 48. Chen, B.K., Luna, V.M., La Gamma, C.T., Xu, X., Deng, S.X., Suckow, R.F., Cooper, T.B., Şah, A., Brachman, R.A., Mendez-David, I., David, D.J., Gradier, A.M., Landry, D.W., Denny, C.A. (2020). Sex-specific neurobiological actions of prophylactic (R,S)-ketamine, (2R,6R)-hydroxynorketamine, and (2S,6S)-hydroxynorketamine. Neuropsychopharmacology, 45(9), 1545-1556. [CrossRef]
  • 49. Fairley S. (2018). Honors thesis. Synthesis of (2R,6R)-Hydroxy-norketamine for evaluation of antidepressant effects. Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Mississippi, Mississippi, USA.
  • 50. Li. S., Wen. B., Zhao W., Wang L., Chen X. (2024). Design, synthesis and biological evaluation of novel ketamine derivatives as NMDAR antagonists. Molecules, 29(11), 2459. [CrossRef]
  • 51. Mo, X., Li, Y., Zhu, X., Li, X., Zhou, H., Bi, X., Li, J. (2021). Vortioxetine derivatives with amino acid as promoiety: Synthesis, activity, stability and preliminary pharmacokinetic study. Journal of Pharmaceuticcal Sciences, 110(8), 3011-3019. [CrossRef]
  • 52. Gershon, M.D. (2004). Review article: Serotonin receptors and transporters-roles in normal and abnormal gastrointestinal motility. Aliment Pharmacology and Therapeutics, 20(7), 3-14. [CrossRef]
  • 53. Oliva, V., Lippi, M., PacI, R., Del Fabro, L., Delvecchio, G., Brambilla, P., De Ronchi, D., Fanelli, G., Serretti, A. (2021). Gastrointestinal side effects associated with antidepressant treatments in patients with major depressive disorder: A systematic review and meta-analysis. Progress in Neuropsychopharmacology and Biological Psychiatry, 109, 110266. [CrossRef]
  • 54. Kishi, T., Ikuta, T., Sakuma, K., Okuya, M., Hatano, M., Matsuda, Y., Iwata, N. (2023). Antidepressants for the treatment of adults with major depressive disorder in the maintenance phase: A systematic review and network meta-analysis. Molecular Psychiatry, 28(1), 402-409. [CrossRef]
  • 55. Kasper, S., Pail, G. (2010). Milnacipran: A unique antidepressant? Neuropsychiatric disease and treatment, 6 (Supplement 1), 23-31. [CrossRef]
  • 56. Stasiuk, W., Szopa, A., Serefko, A., Wyska, E., Świąder, K., Dudka, J., Wlaź, P., Poleszak, E. (2017). Influence of the selective antagonist of the NR2B subunit of the NMDA receptor, traxoprodil, on the antidepressant-like activity of desipramine, paroxetine, milnacipran, and bupropion in mice. Journal of Neural Transmmission, 124(3), 387-396. [CrossRef]
  • 57. Roggen, H., Kehler, J., Stensbøl, T.B., Hansen, T. (2007). Synthesis of enantiomerically pure milnacipran analogs and inhibition of dopamine, serotonin, and norepinephrine transporters. Bioorganic and Medicinal Chemistry Letters, 17(10), 2834-2837. [CrossRef]
  • 58. Kehler, J., Juhl, K., Sejberg, J., Norgaard, M.B. (2005). 2-(1H-İndolylsulfanyl)-benzyl amine derivatives as SSRI. WO 2005061455 A1.

2013-2024 YILLARI ARASINDA FDA ONAYI ALMIŞ ANTİDEPRESANLAR VE YENİ ANTİDEPRESAN İLAÇ GELİŞTİRME ÇALIŞMALARI

Yıl 2025, Cilt: 49 Sayı: 1, 184 - 197, 20.01.2025
https://doi.org/10.33483/jfpau.1487644

Öz

Amaç: Depresyon, insan hayatının herhangi bir döneminde ortaya çıkabilecek, psikiyatrik bir hastalıktır. Antidepresanlar, depresyonun birinci basamak tedavisinde kullanılan ilaçlardır. Depresyonun antidepresanlarla tedavisi, tedavi süresinin uzun olması, depresyonun tedaviye direnç geliştirmesi ve antidepresan kullandıktan sonra hastada yan etkilerin görülmesi nedeniyle olumsuz sonuçlanabilmektedir. Tedavide başarı oranının artması için mevcut antidepresanların geliştirilmesi şarttır.
Sonuç ve Tartışma: İlaç araştırma ve geliştirme çalışmalarının amaçlarından biri de ilaçların daha verimli kullanılmasını sağlamaktır. Son 11 yılda FDA tarafından onaylanan antidepresanlar incelendiğinde çoğunlukla daha önceden geliştirilmiş olan ilaçların farklı dozaj şekillerinin hazırlanmasıyla, spesifik bir izomer kullanılarak ya da steroid yapılı nöroaktif bir madde olan allopregnanolon benzeri maddeler geliştirilmesi şeklinde çalışmalar yapıldığı görülmektedir.

Kaynakça

  • 1. Dean, J., Keshavan, M. (2017). The neurobiology of depression: An integrated view. Asian Journal of Psychiatry, 27, 101-111. [CrossRef]
  • 2. Yüzbaşıoğlu, D., Avuloğlu, Y.E., Ünal, F. (2016). Antidepresan ilaçlar ve genotoksisite. TÜBAV Bilim Dergisi, 9(1), 17-28.
  • 3. Uluğ, B., Özyüksel, B. (2007). Depresyon tanısı alan hastalarda kalıntı belirtilerin yetiyitimi ile ilişkisi: 3 aylık izlem çalışması. Türk Psikiyatri Dergisi, 18(4), 23-329.
  • 4. Zheng, Y., Chang, X., Huang, Y., He, D. (2023). The application of antidepressant drugs in cancer treatment. Biomedicine and Pharmacotherapy, 157, 113985. [CrossRef]
  • 5. Temel, M.K. (2019). Modern psikososyoklinik etmenlerin eseri “Antidepresan kullanım bozukluğu” tıp etiğince sorun teşkil eden bir olgu. Anadolu Kliniği Tıp Bilimleri Dergisi, 24(3), 206-216.
  • 6. Erdoğan, Ç., Rezaki, Ö.H., Koçak, M.O., Buturak, V.Ş. (2020). Farklı etki mekanizmasına sahip antidepresanların etkinlik, bilişsel işlevler ve yan etki açısından karşılaştırılması. Türk Psikiyatri Dergisi, 31(2), 90-98.
  • 7. Artigas, F., Nutt, D.J., Shelton, R. (2002). Mechansim of action of antidepressants. Psychopharmacology Bulletin, 36(2), 123-132.
  • 8. Jaime, B.H., Sánchez-Salcedo, J.A., Estevez-Cabrera, M.M., Jiménez, T.M., Cortes-Altamirano, J.L., Rodríguez, A.A. (2022). Depression and pain: Use of antidepressants. Current Neuropharmacology, 20(2), 384-402. [CrossRef]
  • 9. de Oliveira Costa, J., Gillies, M.B., Pearson, S.A. (2022). Changes in antidepressant use in Australia: A nationwide analysis (2015–2021). Australian and New Zealand Journal of Psychiatry, 57(1), 49-57. [CrossRef]
  • 10. Kornhuber, J., Gulbins, E. (2021). New molecular targets for antidepressant drugs. Pharmaceuticals, 14(9), 894. [CrossRef]
  • 11. Voineskos, D., Daskalakis, Z.J., Blumberger, D.M. (2020). Management of treatment-resistant depression: Challenges and strategies. Neuropsychiatric Disease and Treatment, 16, 221-234. [CrossRef]
  • 12. Keam, S.J. (2023). Gepirone extended-release: First approval drugs. Adis Journals, 83(18), 1723-8. [CrossRef]
  • 13. Yocca, F.D. (1990). Neurochemistry and neurophysiology of buspirone and gepirone: Interactions at presynaptic and postsynaptic 5-HT1A receptors. Journal of Clinical Psychopharmacology, 10(3), 6-12. [CrossRef]
  • 14. Wang, Y.T., Yang, P.C., Zhang, Y.F., Sun, J.F. (2024). Synthesis and clinical application of new drugs approved by FDA in 2023. European Journal of Medicinal Chemistry, 265, 116124. [CrossRef]
  • 15. Shin, C., Ko, Y.H., Shim, S.H., Kim, J.S., Na, K.S., Hahn, S.W., Lee, S.H. (2020). Efficacy of buspirone augmentation of escitalopram in patients with major depressive disorder with and without atypical features: A randomized, 8 week, multicenter, open-label clinical trial. Psychiatry Investigation, 17(8), 796-803. [CrossRef]
  • 16. Engin, E., Benham, R.S., Rudolph, U. (2018). An emerging circuit pharmacology of GABAA receptors. Trends in Pharmacological Sciences, 39(8), 710-732. [CrossRef]
  • 17. Frieder, A., Fersh, M., Hainline, R., Deligiannidis, K.M. (2019). Pharmacotherapy of postpartum depression: Current approaches and novel drug development. CNS Drugs, 33(3), 265-282. [CrossRef]
  • 18. Hosie, A.M., Wilkins, M.E., Da Silva, H.M.A., Smart, T.G. (2006). Endogenous neurosteroids regulate GABAA receptors through two discrete transmembrane sites. Nature, 444, 486-489. [CrossRef]
  • 19. Reddy, D.S. (2010). Neurosteroids: Endogenous role in the human brain and therapeutic potentials. Progress in Brain Research, 186, 113-137. [CrossRef]
  • 20. Bäckström, T., Das, R., Bixo, M. (2022). Positive GABAA receptor modulating steroids and their antagonists: Implications for clinical treatments. Journal Neuroendocrinology, 34(2), e13013. [CrossRef]
  • 21. Agis-Balboa, R.C., Guidotti, A., Pinna, G. (2014). 5α-reductase type I expression is downregulated in the prefrontal cortex/brodmann’s area 9 (BA9) of depressed patients. Psychopharmacology, 231(17), 3569-3580. [CrossRef]
  • 22. Patatanian, E., Nguyen, D.R. (2022). Brexanolone: A novel drug for the treatment of postpartum depression. Journal Pharmacy Practice, 35(3), 431-436. [CrossRef]
  • 23. Erol, A. (2013). Tedaviye dirençli tek uçlu depresyonda ilaç seçimini etkileyen etmenler. Journal of Mood Disorders, 3(1), 7-8.
  • 24. Ionescu, D.F., Rosenbaum, J.F., Alpert, J.E. (2015). Pharmacological approaches to the challenge of treatment-resistant depression. Dialogues Clinical Neuroscience, 17(2), 111-126. [CrossRef]
  • 25. Sanacora, G., Frye, M.A., McDonald, W., Mathew, S.J., Turner, M.S., Schatzberg, A.F., Summergard, P., Nemeroff, C.B. (2017). A consensus statement on the use of ketamine in the treatment of mood disorders. JAMA Psychiatry, 74(4), 399-405. [CrossRef]
  • 26. Zhang, J.C., Li, S. X., Hashimoto, K. (2014). R (−)-ketamine shows greater potency and longer lasting antidepressant effects than S (+)-ketamine. Pharmacology Biochemistry and Behavior, 116, 137-41. [CrossRef]
  • 27. Kim, J., Farchione, T., Potter, A., Chen, Q., Temple, R. (2019). Esketamine for treatment-resistant depression-first FDA-approved antidepressant in a new class. The New England Journal of Medicine, 381(1), 1-4. [CrossRef]
  • 28. D’Agostino, A., English, C.D., Rey, J.A. (2015). Vortioxetine (Brintellix): A new serotonergic antidepressant. Pharmacy and Therapeutics, 40(1), 36-40.
  • 29. Pearce, E.F., Murphy, J.A. (2014). Vortioxetine for the treatment of depression. Annals of Pharmacotherapy, 48(6), 758-765. [CrossRef]
  • 30. Bang-Andersen, B., Ruhland, T., Jørgensen, M., Smith, G., Frederiksen, K., Jensen, K.G., Zhong, H., Nielsen, S.M., Hogg, S., Mørk, A., Stensbøl, T.B. (2011). Discovery of 1-[2-(2,4-dimethylphenylsulfanyl)phenyl]piperazine (Lu AA21004): A novel multimodal compound for the treatment of major depressive disorder. Journal of Medicinal Chemistry, 54(9), 3206-3221. [CrossRef]
  • 31. Schatzberg, A.F., Blier, P., Culpepper, L., Jain, R., Papakostas, G.I., Thase, M.E. (2014). An overview of vortioxetine. Journal of Clinical Psychiatry, 75(12), 1411-1418. [CrossRef]
  • 32. U.S. Food and Drug Web site. (2024). Erişim adresi: https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=204168. Erişim tarihi: 26.01.2024.
  • 33. Asnis, G.M., Henderson, M.A. (2015). Levomilnacipran for the treatment of major depressive disorder: A review. Neuropsychiatric Disease and Treatment, 11, 125-135. [CrossRef]
  • 34. Kishi, T., Ikuta, T., Sakuma, K., Okuya, M., Hatano, M., Matsuda, Y., Iwata, N. (2023). Antidepressants for the treatment of adults with major depressive disorder in the maintenance phase: A systematic review and network meta-analysis. Molecular Psychiatry, 28(1), 402-409. [CrossRef]
  • 35. Saraceni, M.M., Venci, J.V., Gandhi, M.A. (2014). Levomilnacipran (fetzima): A new serotonin-norepinephrine reuptake inhibitor for the treatment of major depressive disorder. Journal of Pharmacy Practice, 27(4), 389-395. [CrossRef]
  • 36. Wu, Y., Zhu, Z., Lan, T., Li, S., Li, Y., Wang, C., Feng, Y., Mao, X., Yu, Ş. (2023). Levomilnacipran improves lipopolysaccharide-induced dysregulation of synaptic plasticity and depression-like behaviors via activating BDNF/TrkB mediated PI3K/Akt/mTOR signaling pathway. Molecular Neurobiology, 61(7), 4102-4115. [CrossRef]
  • 37. Chilmonczyk Z., Krajewski K., Cybulski J. (2002). Rigid analogues of buspirone and gepirone, 5-HT1A receptors partial agonists. Il Farmaco, 57(11), 917-923. [CrossRef]
  • 38. Paluchowska, M.H., Bugno, R., Bojarski, A.J., Charakchieva-Minol, S., Duszyńska, B., Tatarczyńska, E., Kłodzińska, A., Stachowicz, K., Chojnacka-Wójcik, E. (2005). Novel, flexible, and conformationally defined analogs of gepirone: Synthesis and 5-HT1A, 5-HT2A, and D2 receptor activity. Bioorganic and Medicinal Chemistry, 13(4), 1195-1200. [CrossRef]
  • 39. Paul, S.M., Purdy, R.H. (1992). Neuroactive steroids. Federation of American Societies for Experimental Biology Journal, 6(6), 2311-2322. [CrossRef]
  • 40. Lambert, J.J., Belelli, D., Harney, S.C., Peters, J.A., Frenguelli, B.G. (2001). Modulation of native and recombinant GABAA receptors by endogenous and synthetic neuroactive steroids. Brain Research Reviews, 37(1-3), 68-80. [CrossRef]
  • 41. de la Torre, B.G., Albericio, F. (2023). The pharmaceutical industry in 2022: An analysis of FDA drug approvals from the perspective of molecules. Molecules, 28(3), 1038. [CrossRef]
  • 42. Slavíková, B., Bujons, J., Matyáš, L., Vidal, M., Babot, Z., Krištofíková, Z., Sunol, C., Kasal, A. (2013). Allopregnanolone and pregnanolone analogues modified in the C ring: Synthesis and activity. Journal of Medicinal Chemistry, 56(6), 2323-2336. [CrossRef]
  • 43. Xu, L., Ma, J., Shi, L., Li, F. (2023). Design, synthesis and characterizations of prodrugs of brexanolone. Bioorganic and Medicinal Chemistry Letters, 90, 129344. [CrossRef]
  • 44. Rafało-Ulińska, A., Brański, P., Pałucha-Poniewiera, A. (2022). Combined administration of (R)-ketamine and the mGlu2/3 receptor antagonist LY341495 induces rapid and sustained effects in the CUMS model of depression via a TrkB/BDNF-dependent mechanism. Pharmaceuticals, 15(2), 125. [CrossRef]
  • 45. Zhang, K., Yao, Y., Hashimoto, K. (2023). Ketamine and its metabolites: Potential as novel treatments for depression. Neuropharmacology, 222, 109305. [CrossRef]
  • 46. Johnston, J.N, Henter, I.D, Zarate, C.A. (2023). The antidepressant actions of ketamine and its enantiomers. Pharmacology and Therapeutics, 246, 108431. [CrossRef]
  • 47. Morris, P.J., Moaddel, R., Zanos, P., Moore, C.E., Gould, T., Zarate, C.A., Thomas, C.J. (2017). Synthesis and N-Methyl-D-aspartate (NMDA) receptor activity of ketamine metabolites. Organic Letters Journal, 19(17), 4572. [CrossRef]
  • 48. Chen, B.K., Luna, V.M., La Gamma, C.T., Xu, X., Deng, S.X., Suckow, R.F., Cooper, T.B., Şah, A., Brachman, R.A., Mendez-David, I., David, D.J., Gradier, A.M., Landry, D.W., Denny, C.A. (2020). Sex-specific neurobiological actions of prophylactic (R,S)-ketamine, (2R,6R)-hydroxynorketamine, and (2S,6S)-hydroxynorketamine. Neuropsychopharmacology, 45(9), 1545-1556. [CrossRef]
  • 49. Fairley S. (2018). Honors thesis. Synthesis of (2R,6R)-Hydroxy-norketamine for evaluation of antidepressant effects. Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Mississippi, Mississippi, USA.
  • 50. Li. S., Wen. B., Zhao W., Wang L., Chen X. (2024). Design, synthesis and biological evaluation of novel ketamine derivatives as NMDAR antagonists. Molecules, 29(11), 2459. [CrossRef]
  • 51. Mo, X., Li, Y., Zhu, X., Li, X., Zhou, H., Bi, X., Li, J. (2021). Vortioxetine derivatives with amino acid as promoiety: Synthesis, activity, stability and preliminary pharmacokinetic study. Journal of Pharmaceuticcal Sciences, 110(8), 3011-3019. [CrossRef]
  • 52. Gershon, M.D. (2004). Review article: Serotonin receptors and transporters-roles in normal and abnormal gastrointestinal motility. Aliment Pharmacology and Therapeutics, 20(7), 3-14. [CrossRef]
  • 53. Oliva, V., Lippi, M., PacI, R., Del Fabro, L., Delvecchio, G., Brambilla, P., De Ronchi, D., Fanelli, G., Serretti, A. (2021). Gastrointestinal side effects associated with antidepressant treatments in patients with major depressive disorder: A systematic review and meta-analysis. Progress in Neuropsychopharmacology and Biological Psychiatry, 109, 110266. [CrossRef]
  • 54. Kishi, T., Ikuta, T., Sakuma, K., Okuya, M., Hatano, M., Matsuda, Y., Iwata, N. (2023). Antidepressants for the treatment of adults with major depressive disorder in the maintenance phase: A systematic review and network meta-analysis. Molecular Psychiatry, 28(1), 402-409. [CrossRef]
  • 55. Kasper, S., Pail, G. (2010). Milnacipran: A unique antidepressant? Neuropsychiatric disease and treatment, 6 (Supplement 1), 23-31. [CrossRef]
  • 56. Stasiuk, W., Szopa, A., Serefko, A., Wyska, E., Świąder, K., Dudka, J., Wlaź, P., Poleszak, E. (2017). Influence of the selective antagonist of the NR2B subunit of the NMDA receptor, traxoprodil, on the antidepressant-like activity of desipramine, paroxetine, milnacipran, and bupropion in mice. Journal of Neural Transmmission, 124(3), 387-396. [CrossRef]
  • 57. Roggen, H., Kehler, J., Stensbøl, T.B., Hansen, T. (2007). Synthesis of enantiomerically pure milnacipran analogs and inhibition of dopamine, serotonin, and norepinephrine transporters. Bioorganic and Medicinal Chemistry Letters, 17(10), 2834-2837. [CrossRef]
  • 58. Kehler, J., Juhl, K., Sejberg, J., Norgaard, M.B. (2005). 2-(1H-İndolylsulfanyl)-benzyl amine derivatives as SSRI. WO 2005061455 A1.
Toplam 58 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Farmasotik Kimya
Bölüm Derleme
Yazarlar

Mert Karacık 0009-0006-4684-1974

Begüm Evranos Aksöz 0000-0002-1029-6998

Erken Görünüm Tarihi 30 Aralık 2024
Yayımlanma Tarihi 20 Ocak 2025
Gönderilme Tarihi 22 Mayıs 2024
Kabul Tarihi 8 Ekim 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 49 Sayı: 1

Kaynak Göster

APA Karacık, M., & Evranos Aksöz, B. (2025). 2013-2024 YILLARI ARASINDA FDA ONAYI ALMIŞ ANTİDEPRESANLAR VE YENİ ANTİDEPRESAN İLAÇ GELİŞTİRME ÇALIŞMALARI. Journal of Faculty of Pharmacy of Ankara University, 49(1), 184-197. https://doi.org/10.33483/jfpau.1487644
AMA Karacık M, Evranos Aksöz B. 2013-2024 YILLARI ARASINDA FDA ONAYI ALMIŞ ANTİDEPRESANLAR VE YENİ ANTİDEPRESAN İLAÇ GELİŞTİRME ÇALIŞMALARI. Ankara Ecz. Fak. Derg. Ocak 2025;49(1):184-197. doi:10.33483/jfpau.1487644
Chicago Karacık, Mert, ve Begüm Evranos Aksöz. “2013-2024 YILLARI ARASINDA FDA ONAYI ALMIŞ ANTİDEPRESANLAR VE YENİ ANTİDEPRESAN İLAÇ GELİŞTİRME ÇALIŞMALARI”. Journal of Faculty of Pharmacy of Ankara University 49, sy. 1 (Ocak 2025): 184-97. https://doi.org/10.33483/jfpau.1487644.
EndNote Karacık M, Evranos Aksöz B (01 Ocak 2025) 2013-2024 YILLARI ARASINDA FDA ONAYI ALMIŞ ANTİDEPRESANLAR VE YENİ ANTİDEPRESAN İLAÇ GELİŞTİRME ÇALIŞMALARI. Journal of Faculty of Pharmacy of Ankara University 49 1 184–197.
IEEE M. Karacık ve B. Evranos Aksöz, “2013-2024 YILLARI ARASINDA FDA ONAYI ALMIŞ ANTİDEPRESANLAR VE YENİ ANTİDEPRESAN İLAÇ GELİŞTİRME ÇALIŞMALARI”, Ankara Ecz. Fak. Derg., c. 49, sy. 1, ss. 184–197, 2025, doi: 10.33483/jfpau.1487644.
ISNAD Karacık, Mert - Evranos Aksöz, Begüm. “2013-2024 YILLARI ARASINDA FDA ONAYI ALMIŞ ANTİDEPRESANLAR VE YENİ ANTİDEPRESAN İLAÇ GELİŞTİRME ÇALIŞMALARI”. Journal of Faculty of Pharmacy of Ankara University 49/1 (Ocak 2025), 184-197. https://doi.org/10.33483/jfpau.1487644.
JAMA Karacık M, Evranos Aksöz B. 2013-2024 YILLARI ARASINDA FDA ONAYI ALMIŞ ANTİDEPRESANLAR VE YENİ ANTİDEPRESAN İLAÇ GELİŞTİRME ÇALIŞMALARI. Ankara Ecz. Fak. Derg. 2025;49:184–197.
MLA Karacık, Mert ve Begüm Evranos Aksöz. “2013-2024 YILLARI ARASINDA FDA ONAYI ALMIŞ ANTİDEPRESANLAR VE YENİ ANTİDEPRESAN İLAÇ GELİŞTİRME ÇALIŞMALARI”. Journal of Faculty of Pharmacy of Ankara University, c. 49, sy. 1, 2025, ss. 184-97, doi:10.33483/jfpau.1487644.
Vancouver Karacık M, Evranos Aksöz B. 2013-2024 YILLARI ARASINDA FDA ONAYI ALMIŞ ANTİDEPRESANLAR VE YENİ ANTİDEPRESAN İLAÇ GELİŞTİRME ÇALIŞMALARI. Ankara Ecz. Fak. Derg. 2025;49(1):184-97.

Kapsam ve Amaç

Ankara Üniversitesi Eczacılık Fakültesi Dergisi, açık erişim, hakemli bir dergi olup Türkçe veya İngilizce olarak farmasötik bilimler alanındaki önemli gelişmeleri içeren orijinal araştırmalar, derlemeler ve kısa bildiriler için uluslararası bir yayım ortamıdır. Bilimsel toplantılarda sunulan bildiriler supleman özel sayısı olarak dergide yayımlanabilir. Ayrıca, tüm farmasötik alandaki gelecek ve önceki ulusal ve uluslararası bilimsel toplantılar ile sosyal aktiviteleri içerir.