Determination of Traffic Light Time at Signalized Intersections with Fuzzy Logic Method
Yıl 2019,
Cilt: 1 Sayı: 1, 41 - 56, 15.06.2019
*hüseyin Akbulut
,
Cahit Gürer
,
Şule Yarcı
,
Burak Enis Korkmaz
Öz
Increased number of vehicles due to various reasons brings along with drawbacks,
such as traffic congestion and consequently, carbon dioxide emissions, loss of time,
fuel and energy consumption. Traffic congestion reaches its peak value in
intersections. One of the basic control methods used to provide solutions to the
problems occurring especially at the intersections of urbans is signal control.
Signalization is one of the factors that have a significant impact on cycle length,
junction capacity, vehicle delay and other indicators [15]. In order for such an
important factor to be functional, it is of great importance that the right of way given
to the vehicle groups in the intersections is done with the right timing. There is a
tendency for adaptive methods to be used because the existing fixed-loop control
systems are beginning to be inadequate in rapid urban life over time. Today, the most
common use of adaptive methods is the applications made by expert systems. One of
these expert systems is the Fuzzy Logic approach. In this study, the time required for
the green light in an isolated junction is modeled in the case of the change in the
volume of traffic and the average speed of the vehicles in the intersection way with
the help of the Fuzzy Logic Toolbox of the MATLAB package programme. In this
way, it is aimed that the traffic control is dynamic and compatible with the current
condition.
Kaynakça
- Kooykhi, E., Ekbatanifard, G., 2018. An Optimal Dynamic Control Method For An Isolated Intersection Using Fuzzy Systems. Iranian Journal of Optimization. 10.2 :151-164.
- Nair, M., Cai, J., 2007. A Fuzzy Logic Controller For Isolated Signalized Intersection With Traffic Abnormality Considered. IEEE intelligent vehicles symposium. p. 1229-1233.
- Murat, Y. S., Gedizlioglu, E., 2005. A Fuzzy Logic Multi-Phased Signal Control Model For Isolated Junctions. Transportation Research Part C: Emerging Technologies. 13(1),19-36.
- Fahmy, M. M. M., 2007. An Adaptive Traffic Signaling For Roundabout With Four Approach İntersections Based On Fuzzy Logic. Journal of computing and information
technology. 15(1) 33-45.
- Alam, J., Pandey, M. K., and Ahmed, H., 2013. Intellegent Traffic Light Control System For Isolated Iıntersection Using Fuzzy Logic. Proceedings of the Conference on Advances in Communication and Control Systems, Atlantis Press.
- Taha, M.A., Ibrahim, L., 2012. Traffic Simulation System Based On Fuzzy Logic. Procedia Computer Science 12: 356-360.
- Pappis, P. and Mamdani, E.H., 1977. A Fuzzy Logic Controller For A Traffic Junction, IEEE Transactions on Systems, Man and Cybernetics, 707–717.
- Niittymäki, J., Pursula, M., 1997. Saturation Flows At Signal-Group-Controlled Traffic Signals. Transportation Research Record: Journal of the Transportation Research Board, 1572, 24-32.
- Sivanandam, S.N., Sumathi, S., Deepa, S.N., 2007. Introduction To Fuzzy Logic Using MATLAB. Vol. 1. Berlin: Springer.
- Blej, M., Azizi, M., 2016. Comparison Of Mamdani-Type And Sugeno-Type Fuzzy Inference Systems For Fuzzy Real Time Scheduling, International Journal of Applied
Engineering Research, 11(22) 11071-11075.
- Prontri, S., Wuttidittachotti, P., Thajchayapong, S., 2015. Traffic Signal Control Using Fuzzy Logic, 12th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON) IEEE, pp.1-6.
- Wikipedia,(http://www.wikizeroo.net/index.php?q=aHR0cHM6Ly9lbi53aWtpcGVkaWEu b3JnL3dpa2kvRGVmdXp6aWZpY2F0aW9u), Erişim Tarihi: 09.03.2019.
- Başkan, Ö., Ceylan, H., Haldenbilen, S., Ceylan, H., 2007. Kentiçi yollarda hız yoğunluk kapasite ilişkisi ve kapasite kullanım oranının belirlenmesi, 5. Kentsel Altyapı Ulusal Sempozyumu, 147-158.
- Highway Capacity Manuel, 2000, 5-11.
- Ma, X., Chen, H., Zhao, D., Yang, S., Song, Z., 2017. Optimization Method of Cycle Time In Signalized Intersection. 17th COTA International Conference of Transportation.
- Wey, W. M., Jayakrishnan, R., McNally, M.G., 1995. A Local Feedback Controller For Oversaturated Intersection Control Based On Dynamic Road Traffic Models. Vehicle Navigation and Information Systems Conference Proceedings. 6th International VNIS. pp. 172-178.
- Ajao, L.A., Ajao, F. J., Adegboye, M.A., Ismail, A.A., 2018. An Embedded Fuzzy Logic Based Application For Density Traffic Control System. International Journal of Artificial Intelligence Research 2.1: 6-13.
Bulanık Mantık Yöntemi ile Sinyalize Kavşaklarda Trafik Işığı Süresi Belirlenmesi
Yıl 2019,
Cilt: 1 Sayı: 1, 41 - 56, 15.06.2019
*hüseyin Akbulut
,
Cahit Gürer
,
Şule Yarcı
,
Burak Enis Korkmaz
Öz
Çeşitli nedenlerle artan araç sayısı, trafik sıkışıklığını ve bunun sonucunda
karbondioksit emisyonu, zaman kaybı, akaryakıt ve enerji tüketimi gibi
olumsuzlukları beraberinde getirmektedir. Trafik sıkışıklığı, kesişen yol kesimlerinde
zirve değerine ulaşmaktadır. Özellikle büyük kentlerin kavşaklarında meydana gelen
sorunlara çözüm sunmak amacıyla kullanılan temel denetim yöntemlerinden biri
sinyal kontrolüdür. Sinyalizasyon; döngü uzunluğu, kavşak kapasitesi, araç
gecikmesi ve diğer göstergeler üzerinde önemli etkisi olan faktörlerden biridir [15].
Bu denli önemli bir faktörün işlevsel olabilmesi için kavşak kollarında araç gruplarına
verilen geçiş hakkı doğru zamanlama ile yapılması oldukça büyük bir öneme sahiptir.
Mevcut sabit süreli kontrol sistemleri zaman içerisinde hızlı kent yaşamına yetersiz
gelmeye başladığından adaptif yöntemlerin kullanılmasına yönelik bir eğilim vardır.
Günümüzde adaptif yöntemlerin en yaygın kullanımı, uzman sistemler aracılığı ile
yapılan uygulamalardır. Bu uzman sistemlerden biri de Bulanık Mantık yaklaşımıdır.
Bu çalışmada MATLAB paket programının “Fuzzy Logic (Bulanık Mantık) Araç
Kutusu” yardımıyla trafik hacminin ve o kavşak kolundaki araçların ortalama hızının
değişmesi durumunda, izole bir kavşakta yeşil ışık için gereken sürenin modellemesi
yapılmıştır. Bu şekilde, trafik kontrolünün dinamik ve mevcut koşula uyum
sağlayabilen bir yapıda olması hedeflenmiştir.
Kaynakça
- Kooykhi, E., Ekbatanifard, G., 2018. An Optimal Dynamic Control Method For An Isolated Intersection Using Fuzzy Systems. Iranian Journal of Optimization. 10.2 :151-164.
- Nair, M., Cai, J., 2007. A Fuzzy Logic Controller For Isolated Signalized Intersection With Traffic Abnormality Considered. IEEE intelligent vehicles symposium. p. 1229-1233.
- Murat, Y. S., Gedizlioglu, E., 2005. A Fuzzy Logic Multi-Phased Signal Control Model For Isolated Junctions. Transportation Research Part C: Emerging Technologies. 13(1),19-36.
- Fahmy, M. M. M., 2007. An Adaptive Traffic Signaling For Roundabout With Four Approach İntersections Based On Fuzzy Logic. Journal of computing and information
technology. 15(1) 33-45.
- Alam, J., Pandey, M. K., and Ahmed, H., 2013. Intellegent Traffic Light Control System For Isolated Iıntersection Using Fuzzy Logic. Proceedings of the Conference on Advances in Communication and Control Systems, Atlantis Press.
- Taha, M.A., Ibrahim, L., 2012. Traffic Simulation System Based On Fuzzy Logic. Procedia Computer Science 12: 356-360.
- Pappis, P. and Mamdani, E.H., 1977. A Fuzzy Logic Controller For A Traffic Junction, IEEE Transactions on Systems, Man and Cybernetics, 707–717.
- Niittymäki, J., Pursula, M., 1997. Saturation Flows At Signal-Group-Controlled Traffic Signals. Transportation Research Record: Journal of the Transportation Research Board, 1572, 24-32.
- Sivanandam, S.N., Sumathi, S., Deepa, S.N., 2007. Introduction To Fuzzy Logic Using MATLAB. Vol. 1. Berlin: Springer.
- Blej, M., Azizi, M., 2016. Comparison Of Mamdani-Type And Sugeno-Type Fuzzy Inference Systems For Fuzzy Real Time Scheduling, International Journal of Applied
Engineering Research, 11(22) 11071-11075.
- Prontri, S., Wuttidittachotti, P., Thajchayapong, S., 2015. Traffic Signal Control Using Fuzzy Logic, 12th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON) IEEE, pp.1-6.
- Wikipedia,(http://www.wikizeroo.net/index.php?q=aHR0cHM6Ly9lbi53aWtpcGVkaWEu b3JnL3dpa2kvRGVmdXp6aWZpY2F0aW9u), Erişim Tarihi: 09.03.2019.
- Başkan, Ö., Ceylan, H., Haldenbilen, S., Ceylan, H., 2007. Kentiçi yollarda hız yoğunluk kapasite ilişkisi ve kapasite kullanım oranının belirlenmesi, 5. Kentsel Altyapı Ulusal Sempozyumu, 147-158.
- Highway Capacity Manuel, 2000, 5-11.
- Ma, X., Chen, H., Zhao, D., Yang, S., Song, Z., 2017. Optimization Method of Cycle Time In Signalized Intersection. 17th COTA International Conference of Transportation.
- Wey, W. M., Jayakrishnan, R., McNally, M.G., 1995. A Local Feedback Controller For Oversaturated Intersection Control Based On Dynamic Road Traffic Models. Vehicle Navigation and Information Systems Conference Proceedings. 6th International VNIS. pp. 172-178.
- Ajao, L.A., Ajao, F. J., Adegboye, M.A., Ismail, A.A., 2018. An Embedded Fuzzy Logic Based Application For Density Traffic Control System. International Journal of Artificial Intelligence Research 2.1: 6-13.