Araştırma Makalesi
BibTex RIS Kaynak Göster

Aleve dayanıklı ve su geçirmez doğal tekstil kumaşların tasarımı

Yıl 2025, , 362 - 370, 31.01.2025
https://doi.org/10.61112/jiens.1527748

Öz

Dünyada en çok kullanılan doğal elyaf olarak bilinen doğal kumaş, tekstil sektörünün vazgeçilmez bir malzemesi haline geldi. Ancak bu malzemenin hidrofilik doğası ve doğal yanıcılığı, evler, otomotiv araçları, ofisler ve koruyucu giysiler de dahil olmak üzere çeşitli sektörlerdeki uygulamalarında sınırlamalar oluşturmaktadır. Bu bağlamlarda alev geciktirici ve hidrofobik özellikler hayati öneme sahiptir. Bu sorunu çözmek için iki farklı akrilik polimer sentez stratejisi kullanarak doğal kumaşa UV ile kürlenebilen kaplamalar uyguladık. İlk yaklaşımda, metakrilatlanmış bir fenolik lipit, n-alkil metakrilat ile birleştirildi ve UV'ye maruz bırakılarak kopolimerize edilerek hidrofobik ve alev geciktirici bir yüzey elde edildi. İkinci yaklaşımda, doğal kumaş üzerine 3-Aminopropiltrietoksisilan kaplandı ve ardından 9,10-dihidro-9-oksa-10-fosfafenantren-10-oksit (DOPO), 3-Aminopropiltrietoksisilan (APTES) yüzeyinin üzerine uygulanmadan önce uygulanır. UV kürleme sonrasında kumaşın hem kaplama öncesi hem de kaplama sonrası ıslanma davranışı ve alev geciktiriciliğini değerlendirmek için kapsamlı bir çalışma yapıldı. Bu, su temas açısı ve Sınırlayıcı Oksijen İndeksi Testi kullanılarak yapıldı. Bu çalışmanın bulguları, kumaşın hidrofobikliğinin ve alev geciktiriciliğinin UV kaplama yoluyla önemli ölçüde artırılabileceğini göstermektedir. Ayrıca uygulanan monomerler arasındaki başlangıç ​​oranı, bu özelliklere ince ayar yapmak üzere ayarlanabilir. Bu araştırmalarda kullanılan tüm kimyasalların yenilenebilir biyolojik kaynaklardan elde edilmesi, dolayısıyla sürdürülebilirliğin ve biyouyumluluğun sağlanması dikkat çekicidir. Bu husus, çevre dostu ve sosyal açıdan sorumlu üretim uygulamalarına yönelik artan taleple uyumlu olarak tekstil endüstrisi için büyük önem taşımaktadır.

Kaynakça

  • Chand S, Chand S, Raula B (2023) Textile and apparel industries waste and its sustainable management approaches. J Mater Cycles Waste Manag 25:3132–3143. https://doi.org/10.1007/s10163-023-01761-1
  • GVR Report coverTextile Market Size, Share & Trends Report Textile Market Size, Share & Trends Analysis Report By Raw Material (Wool, Chemical, Silk), By Product (Natural Fibers, Polyester), By Application, By Region, And Segment Forecasts, 2024 - 2030. Grand View Research
  • Mukhopadhyay A, Vinay Kumar M (2008) A review on designing the waterproof breathable fabrics part I: Fundamental principles and designing aspects of breathable fabrics. Journal of Industrial Textiles 37:225–262. https://doi.org/10.1177/1528083707082164
  • Papaspyrides CD, Pavlidou S, Vouyiouka SN (2009) Development of advanced textile materials: Natural fibre composites, anti-microbial, and flame-retardant fabrics. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 223(2):91–102. https://doi.org/10.1243/14644207JMDA200
  • Ling C, Guo L, Wang Z (2023) A review on the state of flame-retardant cotton fabric: Mechanisms and applications. Ind Crops Prod 194:116264. https://doi.org/10.1016/j.indcrop.2023.116264
  • Saridewi N, Adinda AR, Nurbayti S (2022) Characterization and Antibacterial Activity Test of Green Synthetic ZnO Nanoparticles Using Avocado (Persea americana) Seed Extract. Jurnal Kimia Sains dan Aplikasi 25:116–122. https://doi.org/10.14710/jksa.25.3.116-122
  • Faheem S, Nahid N, Wiener J, Tomková B, Pechočiaková M, Militký J, Mazari A (2023) Flame Retardancy of Textiles—New Strategies and Mechanisms. In: Militký, J., Venkataraman, M. (eds) Advanced Multifunctional Materials from Fibrous Structures. Advanced Structured Materials, vol 201. Springer, Singapore pp 279–317. https://doi.org/10.1007/978-981-99-6002-6_12
  • Qi P, Chen F, Li Y, Li H, Gu X, Sun J, Zhang S (2023) A Review of Durable Flame-Retardant Fabrics by Finishing:Fabrication Strategies and Challenges. Advanced Fiber Materials 5:731–763. https://doi.org/10.1007/s42765-023-00255-x
  • Yildiz Z (2023) Green Photocurable Phosphorus Containing Coatings on Cotton Fabrics. Uludağ University Journal of The Faculty of Engineering 28:645–664. https://doi.org/10.17482/uumfd.1258916
  • Liang S, Xu K, Liu H, Gui X, Zhang T (2019) Preparation and characterization of dimer fatty acid epoxy-acrylate resin hybrid emulsion for photocurable coatings. Colloid Polym Sci 297:1199–1211. https://doi.org/10.1007/s00396-019-04534-1
  • Irmouli Y, George B, Merlin A (2012) Artificial ageing of wood finishes monitored by IR analysis and color measurements. J Appl Polym Sci 124:1938–1946. https://doi.org/10.1002/app.34797
  • Kaikade DS, Sabnis AS (2023) Recent Advances in Polyurethane Coatings and Adhesives Derived from Vegetable Oil-Based Polyols. J Polym Environ 31:4583–4605. https://doi.org/10.1007/s10924-023-02920-z
  • Braish T, Tinel L, Depelchin L, Gaudion V, Andres Y, Caudron C, Antczak E, Brachelet F, Locoge N (2023) Evaluation of the seasonal variation of VOC surface emissions and indoor air concentrations in a public building with bio-based insulation. Build Environ 238, 110312. https://doi.org/10.1016/j.buildenv.2023.110312
  • Wu J, Qian Y, Sutton CA, La Scala JJ, Webster DC, Sibi MP (2021) Bio-Based Furanic Di(meth)acrylates as Reactive Diluents for UV Curable Coatings: Synthesis and Coating Evaluation. ACS Sustain Chem Eng 9:15537–15544. https://doi.org/10.1021/acssuschemeng.1c05588
  • Şeker H, Çakmakçi E (2020) Fully bio-based thiol-ene photocured thermosets from isosorbide and tung oil. Journal of Polymer Science 58(8):1105–1114. https://doi.org/10.1002/pol.20190291
  • Lin Z, Zhang Y, Ober CK, Goddard JM (2018) Facile Preparation of Epoxide-Functionalized Surfaces via Photocurable Copolymer Coatings and Subsequent Immobilization of Iminodiacetic Acids. ACS Appl Mater Interfaces 10(47):40871–40879. https://doi.org/10.1021/acsami.8b15716
  • Liu M, Liu Y, Wang P, Ying W, Liu Q, Ding G, Chen S (2023) Synthesis and Properties of a Photocurable Coating Based on Waste Cooking Oil. Coatings 13(9), 1553. https://doi.org/10.3390/coatings13091553
  • Dizman C, Eral S, Babayi̇ği̇t L, Apohan NK (2024) Salt Spray Resistant Acrylic Copolymers Containing Bio-based Cardanol Molecules with Hybrid Thermoplastic-Thermoset Characteristics. J Polym Environ 32:6029–6044. https://doi.org/10.1007/s10924-024-03358-7
  • Yu L, Chen L, Dong LP, Li LJ, Wang YZ (2014) Organic–inorganic hybrid flame retardant: preparation, characterization and application in EVA. RSC Advances, 4(34):17812-17821. RSC Adv 4:17812-17821. https://doi.org/10.1039/c4ra00700j
  • Hoque MT, Benrui T, Grethe T, Mahltig B (2023) Evaluation of chitosan based pretreatment for cotton and linen dyeing with direct dyes and reactive dyes. Communications in Development and Assembling of Textile Products 4(2):187–200. https://doi.org/10.25367/cdatp.2023.4.p187-200
  • Jain AK, Tesema AF, Haile A (2018) Development of multifunctional cotton using fluorocarbon resin. Journal of Textiles and Fibrous Materials 2018, 1. https://doi.org/10.1177/2515221118786052
  • Bhuiyan MAR, Wang L, Shanks RA, Ding J (2019) Polyurethane–superabsorbent polymer-coated cotton fabric for thermophysiological wear comfort. J Mater Sci 54:9267–9281. https://doi.org/10.1007/s10853-019-03495-8
  • An W, Ma J, Xu Q, Fan Q (2020) Flame retardant, antistatic cotton fabrics crafted by layer-by-layer assembly. Cellulose 27:8457–8469. https://doi.org/10.1007/s10570-020-03356-7

Design of flameproof and waterproof natural textile fabrics

Yıl 2025, , 362 - 370, 31.01.2025
https://doi.org/10.61112/jiens.1527748

Öz

Natural fabrics, particularly linen and cotton are widely used in the textile industry due to their desirable properties, including breathability, durability, and comfort. However, their hydrophilic nature and inherent flammability pose limitations on their applications in various areas, such as residential settings, automotive vehicles, offices, and protective clothing. In these contexts, flame-retardant and hydrophobic properties are of crucial importance. To address this issue, we have applied UV-curable coatings on the surface of linen and cotton fabrics by employing two distinct acrylic polymer synthesis strategies. In the first approach, a methacrylated phenolic lipid was combined with n-alkyl methacrylate and copolymerized under UV exposure resulting in a hydrophobic and flame-retardant surface. In the second approach, 3-Aminopropyltriethoxysilane is coated on the natural fabric, and then 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) is applied above the 3-Aminopropyltriethoxysilane (APTES) surface prior to UV curing. A comprehensive study was conducted to evaluate the wetting behavior and flame retardancy of the fabric both before and after coating. This was done by employing water contact angle and limiting oxygen index testing. The findings of this study demonstrate that the hydrophobicity and flame retardancy of the fabric can be substantially enhanced through UV coating. Furthermore, the initial ratio between the applied monomers can be adjusted to fine-tune these properties. It is noteworthy that all the chemicals utilized in these investigations are derived from renewable bioresources, thereby ensuring sustainability and biocompatibility. This aspect holds significant importance for the textile industry, aligning with the growing demand for environmentally friendly and socially responsible manufacturing practices.

Destekleyen Kurum

İZEL KİMYA

Kaynakça

  • Chand S, Chand S, Raula B (2023) Textile and apparel industries waste and its sustainable management approaches. J Mater Cycles Waste Manag 25:3132–3143. https://doi.org/10.1007/s10163-023-01761-1
  • GVR Report coverTextile Market Size, Share & Trends Report Textile Market Size, Share & Trends Analysis Report By Raw Material (Wool, Chemical, Silk), By Product (Natural Fibers, Polyester), By Application, By Region, And Segment Forecasts, 2024 - 2030. Grand View Research
  • Mukhopadhyay A, Vinay Kumar M (2008) A review on designing the waterproof breathable fabrics part I: Fundamental principles and designing aspects of breathable fabrics. Journal of Industrial Textiles 37:225–262. https://doi.org/10.1177/1528083707082164
  • Papaspyrides CD, Pavlidou S, Vouyiouka SN (2009) Development of advanced textile materials: Natural fibre composites, anti-microbial, and flame-retardant fabrics. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 223(2):91–102. https://doi.org/10.1243/14644207JMDA200
  • Ling C, Guo L, Wang Z (2023) A review on the state of flame-retardant cotton fabric: Mechanisms and applications. Ind Crops Prod 194:116264. https://doi.org/10.1016/j.indcrop.2023.116264
  • Saridewi N, Adinda AR, Nurbayti S (2022) Characterization and Antibacterial Activity Test of Green Synthetic ZnO Nanoparticles Using Avocado (Persea americana) Seed Extract. Jurnal Kimia Sains dan Aplikasi 25:116–122. https://doi.org/10.14710/jksa.25.3.116-122
  • Faheem S, Nahid N, Wiener J, Tomková B, Pechočiaková M, Militký J, Mazari A (2023) Flame Retardancy of Textiles—New Strategies and Mechanisms. In: Militký, J., Venkataraman, M. (eds) Advanced Multifunctional Materials from Fibrous Structures. Advanced Structured Materials, vol 201. Springer, Singapore pp 279–317. https://doi.org/10.1007/978-981-99-6002-6_12
  • Qi P, Chen F, Li Y, Li H, Gu X, Sun J, Zhang S (2023) A Review of Durable Flame-Retardant Fabrics by Finishing:Fabrication Strategies and Challenges. Advanced Fiber Materials 5:731–763. https://doi.org/10.1007/s42765-023-00255-x
  • Yildiz Z (2023) Green Photocurable Phosphorus Containing Coatings on Cotton Fabrics. Uludağ University Journal of The Faculty of Engineering 28:645–664. https://doi.org/10.17482/uumfd.1258916
  • Liang S, Xu K, Liu H, Gui X, Zhang T (2019) Preparation and characterization of dimer fatty acid epoxy-acrylate resin hybrid emulsion for photocurable coatings. Colloid Polym Sci 297:1199–1211. https://doi.org/10.1007/s00396-019-04534-1
  • Irmouli Y, George B, Merlin A (2012) Artificial ageing of wood finishes monitored by IR analysis and color measurements. J Appl Polym Sci 124:1938–1946. https://doi.org/10.1002/app.34797
  • Kaikade DS, Sabnis AS (2023) Recent Advances in Polyurethane Coatings and Adhesives Derived from Vegetable Oil-Based Polyols. J Polym Environ 31:4583–4605. https://doi.org/10.1007/s10924-023-02920-z
  • Braish T, Tinel L, Depelchin L, Gaudion V, Andres Y, Caudron C, Antczak E, Brachelet F, Locoge N (2023) Evaluation of the seasonal variation of VOC surface emissions and indoor air concentrations in a public building with bio-based insulation. Build Environ 238, 110312. https://doi.org/10.1016/j.buildenv.2023.110312
  • Wu J, Qian Y, Sutton CA, La Scala JJ, Webster DC, Sibi MP (2021) Bio-Based Furanic Di(meth)acrylates as Reactive Diluents for UV Curable Coatings: Synthesis and Coating Evaluation. ACS Sustain Chem Eng 9:15537–15544. https://doi.org/10.1021/acssuschemeng.1c05588
  • Şeker H, Çakmakçi E (2020) Fully bio-based thiol-ene photocured thermosets from isosorbide and tung oil. Journal of Polymer Science 58(8):1105–1114. https://doi.org/10.1002/pol.20190291
  • Lin Z, Zhang Y, Ober CK, Goddard JM (2018) Facile Preparation of Epoxide-Functionalized Surfaces via Photocurable Copolymer Coatings and Subsequent Immobilization of Iminodiacetic Acids. ACS Appl Mater Interfaces 10(47):40871–40879. https://doi.org/10.1021/acsami.8b15716
  • Liu M, Liu Y, Wang P, Ying W, Liu Q, Ding G, Chen S (2023) Synthesis and Properties of a Photocurable Coating Based on Waste Cooking Oil. Coatings 13(9), 1553. https://doi.org/10.3390/coatings13091553
  • Dizman C, Eral S, Babayi̇ği̇t L, Apohan NK (2024) Salt Spray Resistant Acrylic Copolymers Containing Bio-based Cardanol Molecules with Hybrid Thermoplastic-Thermoset Characteristics. J Polym Environ 32:6029–6044. https://doi.org/10.1007/s10924-024-03358-7
  • Yu L, Chen L, Dong LP, Li LJ, Wang YZ (2014) Organic–inorganic hybrid flame retardant: preparation, characterization and application in EVA. RSC Advances, 4(34):17812-17821. RSC Adv 4:17812-17821. https://doi.org/10.1039/c4ra00700j
  • Hoque MT, Benrui T, Grethe T, Mahltig B (2023) Evaluation of chitosan based pretreatment for cotton and linen dyeing with direct dyes and reactive dyes. Communications in Development and Assembling of Textile Products 4(2):187–200. https://doi.org/10.25367/cdatp.2023.4.p187-200
  • Jain AK, Tesema AF, Haile A (2018) Development of multifunctional cotton using fluorocarbon resin. Journal of Textiles and Fibrous Materials 2018, 1. https://doi.org/10.1177/2515221118786052
  • Bhuiyan MAR, Wang L, Shanks RA, Ding J (2019) Polyurethane–superabsorbent polymer-coated cotton fabric for thermophysiological wear comfort. J Mater Sci 54:9267–9281. https://doi.org/10.1007/s10853-019-03495-8
  • An W, Ma J, Xu Q, Fan Q (2020) Flame retardant, antistatic cotton fabrics crafted by layer-by-layer assembly. Cellulose 27:8457–8469. https://doi.org/10.1007/s10570-020-03356-7
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Polimer Bilimi ve Teknolojileri, Kumaş Teknolojisi, Tekstil Kimyası
Bölüm Araştırma Makaleleri
Yazarlar

Turdimuhammad Abdullah 0000-0003-3335-4561

Levent Babayiğit 0000-0001-6286-5083

Aleyna Turanlı 0000-0001-5087-6797

Recep Furkan Turan 0000-0003-0053-7927

Cemil Dızman 0000-0002-1780-3008

Yayımlanma Tarihi 31 Ocak 2025
Gönderilme Tarihi 4 Ağustos 2024
Kabul Tarihi 17 Aralık 2024
Yayımlandığı Sayı Yıl 2025

Kaynak Göster

APA Abdullah, T., Babayiğit, L., Turanlı, A., Turan, R. F., vd. (2025). Design of flameproof and waterproof natural textile fabrics. Journal of Innovative Engineering and Natural Science, 5(1), 362-370. https://doi.org/10.61112/jiens.1527748


by.png
Journal of Innovative Engineering and Natural Science by İdris Karagöz is licensed under CC BY 4.0