Araştırma Makalesi
BibTex RIS Kaynak Göster

Ultrasonikasyon ve setil trimetil amonyum klorür (CTAC) katalizörü koşulları altında kenevir lifinden selüloz olmayan materyallerin uzaklaştırılması

Yıl 2025, , 187 - 195, 31.01.2025
https://doi.org/10.61112/jiens.1540102

Öz

Son zamanlarda, küresel ısınma, kirlilik ve fosil kaynaklarının sürdürülebilirliği konusundaki endişelerin artması nedeniyle, farklı endüstrilerde yenilenebilir ve sürdürülebilir doğal malzemelere olan ilgi artmıştır. Bu nedenle, belirli kompozit malzeme uygulamalarında cam ve karbon gibi sentetik lifler yerine kenevir gibi yenilenebilir ve sürdürülebilir doğal liflerin kullanımı daha popüler hale gelmiştir. Kenevir de dahil olmak üzere doğal liflerin dezavantajı, polar yapıları nedeniyle lif/matris ara yüzeyinde polar olmayan ve hidrofobik matrislerle uyumsuzluk göstermeleridir. Bu durum, lif ile matris arasında zayıf yapışmaya yol açarak, nihai kompozitlerin mekanik özelliklerinin azalmasına neden olur. Doğal lif kompozitlerinin performansını artırmak için liflerin modifiye edilmesi gereklidir. Kenevir lifi yapısında bulunan lignin, mumlar, hemiselülozlar ve pektin gibi selüloz olmayan maddeler de zayıf lif/matris yapışması nedeniyle kompozitlerin mekanik performansını etkiler. Bu çalışmada, kenevir lifindeki selüloz olmayan maddelerin bozunma hızını artırmak için ultrason destekli bir ön işlemde kuarterner amonyum hidroksit kullanılmıştır. Sabit (%10 w/w) NaOH konsantrasyonuyla %1 ila %8 w/w arasında değişen setil trimetil amonyum klorür (CTAC) konsantrasyonları kullanılmıştır. Kenevir lifi yüzeyleri taramalı elektron mikroskobu (SEM) kullanılarak analiz edilmiştir. Bulgular, ultrason destekli alkali işlemin lif yüzeyinden selüloz olmayan maddeleri etkili bir şekilde uzaklaştırdığını ortaya koymuştur. Bu uzaklaştırma, TGA ve FT-IR analizi ile de doğrulanmıştır.

Proje Numarası

FHD-2023-1294

Kaynakça

  • Gholampour A, Ozbakkaloğlu T (2020) A review of natural fiber composites: properties, modification and processing techniques, characterization, applications. Journal of Materials Science 55:829–892.
  • Joshi SV, Drzal LT, Mohanty AK, Arora S (2004) Are natural fiber composites environmentally superior to glass fiber reinforced composites? Composites Part A: Applied Science and Manufacturing 35:371-376.
  • Sawpan MA, Pickering KL, Fernyhough A (2011) Effect of various chemical treatments on the fibre structure and tensile properties of industrial hemp fibres. Composites Part A Applied Science and Manufacturing, 42(8):888-895.
  • Kapoor M, Beg QK, Bhushan B, Singh K, Dadhich KS, Hoondal GS (2001) Aplication of an alkaline and thermostable polygalacturonase from bacillus sp. mg-cp-2 in degumming of ramie (boehmeria nivea) and sun hemp (crotalaria juncea) bast fibres. Process Biochemistry 36:803-807.
  • Ray D, Sarkar BK (2001) Characterization of alkali-treated jute fibers for physical and mechanical properties. Journal of Applied Polymer Science 80:1013-1020.
  • Mwaikambo LY, Ansell MP (2006) Mechanical properties of alkali treated plant fibres and their potential as reinforcement materials I. Hemp fibres. Journal of Materials Science 41:2483-2496.
  • Sinha E, Rout S (2008) Influence of fibre-surface treatment on structural, thermal and mechanical properties of jute. Journal of Materials Science 43:2590-2601.
  • Das M, Chakrabarty D (2008) Thermogravimetric analysis and weathering study by water immersion of alkali treated bamboo fibres. BioResources 3(4):1051-1062.
  • John MJ, Anandjiwala RD (2008) Recent developments in chemical modification and characterization of natural fiber-reinforced composites. Polymer Composites 29(2):187–207.
  • Oushabi A, Sair S, Hassani FO, Abboud Y, Tanane O, El Bouari A (2017) The effect of alkali treatment on mechanical, morphological and thermal properties of date palm fibres (DPFs): Study of the interface of DPF Polyurethane composite. South African Journal of Chemical Engineering 23:116-123.
  • Mishra S, Mohanty AK, Drzal LT, Misra M, Parija S, Nayak SK, Tripathy SS (2003) Studies on mechanical performance of biofibre/glass reinforced polyester hybrid composites. Composites Science and Technology 63:1377-1385.
  • Sunny T, Pickering KL, Lim SH (2020) Alkali treatment of hemp fibres for the production of aligned hemp fibre mats for composite reinforcement. Cellulose 27:2569-2582.
  • Alao PF, Marrot L, Burnard MD, Lavric G, Saarna M, Kers J (2021) Impact of alkali and silane treatment on hemp/PLA composites’ performance: From micro to macro scale. Polymers 13(6), 851.
  • Wang H, Kabir MM, Lau KT (2014) Hemp reinforced composites with alkalization and acetylation fibre treatments. Polymers & Polymer Composites 22:247-252.
  • Myers D (2006) Surfactant Science and Technology. John Wiley and Sons, Hoboken, NJ, USA.
  • Rosen MJ (2004) Surfactants and Interfacial Phenomena. Third ed., Wiley-Interscience, New Jersey.
  • Al-Lohedan HA (1995) Quantitative treatment of micellar effects upon nucleophilic substitution. J Chem Soc Perkin Trans, 2:1707–1713.
  • Karaduman Y, Secinti-Klopf H, Sahbaz Karaduman N (2024) Ultrasonication-assisted alkali treatment of hemp fibers to improve the fiber/matrix interface of hemp/epoxy composites: The influence of sodium dodecyl sulfate surfactant. Polymer Composites 45:8187-8201.
  • Islam MS, Pickering KL, Foreman NJ (2011) Influence of alkali fiber treatment and fiber processing on the mechanical properties of hemp/epoxy composites. Journal of Applied Polymer Science 119:3696–3707.
  • Sepe R, Bollino F, Boccarusso L, Caputo F (2018) Influence of chemical treatments on mechanical properties of hemp fiber reinforced composites. Composites Part B: Engineering 133:210-217.
  • Kabir MM, Wang H, Lau KT, Cardona F, Aravinthan T (2012) Mechanical properties of chemically-treated hemp fibre reinforced sandwich composites. Composites Part B: Engineering 43:159-169.
  • Beckermann GW, Pickering KL (2008) Engineering and evaluation of hemp fibre reinforced polypropylene composites:Fibre treatment and matrix modification. Composites Part A: Applied Science and Manufacturing 39:979-988.

Removal of non-cellulosic materials from hemp fiber under ultrasonication conditions and cetyl trimethyl ammonium chloride (CTAC) catalyst

Yıl 2025, , 187 - 195, 31.01.2025
https://doi.org/10.61112/jiens.1540102

Öz

Recently, due to rising worries about global warming, pollution, and the sustainability of fossil resources, there has been a heightened interest in renewable and sustainable natural materials across different industries. Consequently, the use of renewable and sustainable natural fibers such as hemp instead of synthetic ones, such as glass and carbon has become more popular in certain composite material applications. A drawback of natural fibers including hemp is that their polar nature often leads to incompatibility at the fiber/matrix interface with nonpolar and hydrophobic matrices. This leads to weak adhesion between the fiber and matrix, resulting in reduced mechanical properties of the final composites. To enhance the performance of natural fiber composites, it is essential to modify the fibers. Non-cellulosic substances such as lignin, waxes, hemicelluloses and pectin present in the hemp fiber structure also affect the mechanical performance of composites due to poor fiber/matrix adhesion. In this study quaternary ammonium hydroxide was used in an ultrasonic-assisted pretreatment to increase the degradation rate of non-cellulosic substances in hemp fiber. Cetyl trimethyl ammonium chloride (CTAC) concentrations ranging between 1 and 8% w/w were used with a constant (10% w/w) NaOH concentration. Hemp fiber surfaces were analyzed using a scanning electron microscope (SEM). The findings revealed that ultrasonication-assisted alkali treatment effectively removed non-cellulosic substances from the fiber surface. This removal was further validated by TGA and FT-IR analysis.

Destekleyen Kurum

Yozgat Bozok University

Proje Numarası

FHD-2023-1294

Teşekkür

This study was presented as an oral presentation at the 14th International Fiber and Polymer Symposium (14th ULPAS) in Bursa/Turkey on 24-25 May 2024. This work was supported by Yozgat Bozok University Scientific Research Projects Coordination Unit, Turkey (grant number FHD-2023-1294).

Kaynakça

  • Gholampour A, Ozbakkaloğlu T (2020) A review of natural fiber composites: properties, modification and processing techniques, characterization, applications. Journal of Materials Science 55:829–892.
  • Joshi SV, Drzal LT, Mohanty AK, Arora S (2004) Are natural fiber composites environmentally superior to glass fiber reinforced composites? Composites Part A: Applied Science and Manufacturing 35:371-376.
  • Sawpan MA, Pickering KL, Fernyhough A (2011) Effect of various chemical treatments on the fibre structure and tensile properties of industrial hemp fibres. Composites Part A Applied Science and Manufacturing, 42(8):888-895.
  • Kapoor M, Beg QK, Bhushan B, Singh K, Dadhich KS, Hoondal GS (2001) Aplication of an alkaline and thermostable polygalacturonase from bacillus sp. mg-cp-2 in degumming of ramie (boehmeria nivea) and sun hemp (crotalaria juncea) bast fibres. Process Biochemistry 36:803-807.
  • Ray D, Sarkar BK (2001) Characterization of alkali-treated jute fibers for physical and mechanical properties. Journal of Applied Polymer Science 80:1013-1020.
  • Mwaikambo LY, Ansell MP (2006) Mechanical properties of alkali treated plant fibres and their potential as reinforcement materials I. Hemp fibres. Journal of Materials Science 41:2483-2496.
  • Sinha E, Rout S (2008) Influence of fibre-surface treatment on structural, thermal and mechanical properties of jute. Journal of Materials Science 43:2590-2601.
  • Das M, Chakrabarty D (2008) Thermogravimetric analysis and weathering study by water immersion of alkali treated bamboo fibres. BioResources 3(4):1051-1062.
  • John MJ, Anandjiwala RD (2008) Recent developments in chemical modification and characterization of natural fiber-reinforced composites. Polymer Composites 29(2):187–207.
  • Oushabi A, Sair S, Hassani FO, Abboud Y, Tanane O, El Bouari A (2017) The effect of alkali treatment on mechanical, morphological and thermal properties of date palm fibres (DPFs): Study of the interface of DPF Polyurethane composite. South African Journal of Chemical Engineering 23:116-123.
  • Mishra S, Mohanty AK, Drzal LT, Misra M, Parija S, Nayak SK, Tripathy SS (2003) Studies on mechanical performance of biofibre/glass reinforced polyester hybrid composites. Composites Science and Technology 63:1377-1385.
  • Sunny T, Pickering KL, Lim SH (2020) Alkali treatment of hemp fibres for the production of aligned hemp fibre mats for composite reinforcement. Cellulose 27:2569-2582.
  • Alao PF, Marrot L, Burnard MD, Lavric G, Saarna M, Kers J (2021) Impact of alkali and silane treatment on hemp/PLA composites’ performance: From micro to macro scale. Polymers 13(6), 851.
  • Wang H, Kabir MM, Lau KT (2014) Hemp reinforced composites with alkalization and acetylation fibre treatments. Polymers & Polymer Composites 22:247-252.
  • Myers D (2006) Surfactant Science and Technology. John Wiley and Sons, Hoboken, NJ, USA.
  • Rosen MJ (2004) Surfactants and Interfacial Phenomena. Third ed., Wiley-Interscience, New Jersey.
  • Al-Lohedan HA (1995) Quantitative treatment of micellar effects upon nucleophilic substitution. J Chem Soc Perkin Trans, 2:1707–1713.
  • Karaduman Y, Secinti-Klopf H, Sahbaz Karaduman N (2024) Ultrasonication-assisted alkali treatment of hemp fibers to improve the fiber/matrix interface of hemp/epoxy composites: The influence of sodium dodecyl sulfate surfactant. Polymer Composites 45:8187-8201.
  • Islam MS, Pickering KL, Foreman NJ (2011) Influence of alkali fiber treatment and fiber processing on the mechanical properties of hemp/epoxy composites. Journal of Applied Polymer Science 119:3696–3707.
  • Sepe R, Bollino F, Boccarusso L, Caputo F (2018) Influence of chemical treatments on mechanical properties of hemp fiber reinforced composites. Composites Part B: Engineering 133:210-217.
  • Kabir MM, Wang H, Lau KT, Cardona F, Aravinthan T (2012) Mechanical properties of chemically-treated hemp fibre reinforced sandwich composites. Composites Part B: Engineering 43:159-169.
  • Beckermann GW, Pickering KL (2008) Engineering and evaluation of hemp fibre reinforced polypropylene composites:Fibre treatment and matrix modification. Composites Part A: Applied Science and Manufacturing 39:979-988.
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kompozit ve Hibrit Malzemeler
Bölüm Araştırma Makaleleri
Yazarlar

Hatice Seçinti Klopf 0000-0002-6665-3448

Proje Numarası FHD-2023-1294
Yayımlanma Tarihi 31 Ocak 2025
Gönderilme Tarihi 28 Ağustos 2024
Kabul Tarihi 6 Ocak 2025
Yayımlandığı Sayı Yıl 2025

Kaynak Göster

APA Seçinti Klopf, H. (2025). Removal of non-cellulosic materials from hemp fiber under ultrasonication conditions and cetyl trimethyl ammonium chloride (CTAC) catalyst. Journal of Innovative Engineering and Natural Science, 5(1), 187-195. https://doi.org/10.61112/jiens.1540102


by.png
Journal of Innovative Engineering and Natural Science by İdris Karagöz is licensed under CC BY 4.0