Derleme
BibTex RIS Kaynak Göster

Mini-review of the bi-component nanofibrous scaffolds and drug delivery applications

Yıl 2024, Cilt: 4 Sayı: 2, 391 - 413, 31.07.2024
https://doi.org/10.61112/jiens.1417524

Öz

Drug delivery systems perform to improve the drug's efficacy and heal the affected region. Electrospun nanofibers are strong drug carriers as a scaffold due to their high specific surface area, easy processing, lightweight material. Fibrous scaffolds encapsulating functional bioactive agents are important for drug delivery applications, and they show higher encapsulation efficiency and higher drug loading capacity than various types of carrier materials such as hydrogels, micro/nanobeads, films, conventional fibers, and sponges. In comparison to conventional electrospinning, bi-component electrospinning where drug loading does not occur largely on the surface of the polymer matrix, core-shell nanofibers showed delayed release and a decrease in burst release because the drug was loaded into the core layer. The purpose of this mini-review is to investigate the production and applications of the drug-loaded bi-component nanofibers in structure core-shell, side-by-side, hollow nanofibers, and also emulsion nanofibers using co-axial nozzles. Further, the parameters which influence of these electrospinning process, such as working conditions and polymer properties, as well as drug delivery profile of the resulting nanofibers, have been outlined briefly. The limited clinical studies on the nanofibers have been discussed. Eventually, perspectives on the problems, possibilities, and new approaches for electrospinning advancements have been presented, as well.

Kaynakça

  • Lv H, Yu, DG, Wang M, Ning T (2021) Nanofabrication of Janus fibers through side-by-side electrospinning-A mini review. Materials Highlights 2(1-2):18-22. https://doi.org/10.2991/mathi.k.210212.001
  • Walther A, Muller AH (2013) Janus particles: synthesis, self-assembly, physical properties, and applications. Chem Rev 113(7):5194-5261. https://doi.org/10.1021/cr300089t
  • Yu DG, Li JJ, Zhang M, Williams GR (2017) High-quality Janus nanofibers prepared using three-fluid electrospinning. Chem Commun 53(33):4542-4545. https://doi.org/10.1039/C7CC01661A
  • Ciftci F, Duygulu N, Yilmazer Y, Karavelioğlu Z, Çakır Koç R, Gündüz O, Ustündag CB (2023) Antibacterial and cellular behavior of PLA-based bacitracin and zataria multiflora nanofibers produced by electrospinning method. Int J Polym Mater Polym Biomater 72(4):319-334. https://doi.org/10.1080/00914037.2021.2008391
  • Singh M, Chauhan D, Das AK, Iqbal Z, Solanki PR (2021) PVA/PMMA polymer blended composite electrospun nanofibers mat and their potential use as an anti‐biofilm product. J Appl Polym Sci 138(18):50340. https://doi.org/10.1002/app.50340
  • Xue J, Wu T, Dai Y, Xia Y (2019) Electrospinning and electrospun nanofibers: Methods, materials, and applications. Chem Rev 119(8):5298-5415. https://doi.org/10.1021/acs.chemrev.8b00593
  • Parin FN (2022) Retrospective, Perspective and Prospective of B-Complex Vitamins: Encapsulation of Vitamins and Release from Vitamin-Loaded Polymers. In: Guy LeBlanc J (ed) B-Complex Vitamins: Sources, Intakes and Novel Applications, 1st edn, IntechOpen, United Kingdom, ss 101-122.
  • Zhang X, Shi X, Gautrot JE, Peijs T (2021) Nanoengineered electrospun fibers and their biomedical applications: a review. Nanocomposites 7(1):1-34. https://doi.org/10.1080/20550324.2020.1857121
  • Luraghi A, Peri F, Moroni L (2021) Electrospinning for drug delivery applications: A review. J Controlled Release 334:463-484. https://doi.org/10.1016/j.jconrel.2021.03.033
  • Chien AT, Gulgunje PV, Chae HG, Joshi AS, Moon J, Feng B, Kumar S (2013) Functional polymer–polymer/carbon nanotube bi-component fibers. Polymer 54(22):6210-6217. https://doi.org/10.1016/j.polymer.2013.08.061
  • Zhao P, Chen W, Feng Z, Liu Y, Liu P, Xie Y, Yu DG (2022) Electrospun nanofibers for periodontal treatment: A recent progress. Int J Nanomed 17:4137-4162. https://doi.org/10.2147/IJN.S370340
  • Chen W, Zhao P, Yang Y, Yu DG (2022) Electrospun beads-on-the-string nanoproducts: Preparation and drug delivery application. Curr Drug Deliv 20(9):1224-1240. https://doi.org/10.2174/1567201819666220525095844
  • Liu Y, Chen X, Liu Y, Gao Y, Liu P (2022) Electrospun co-axial fibers to optimize the release of poorly water-soluble drug. Polymers 14(3):469. https://doi.org/10.3390/polym14030469
  • Ning T, Zhou Y, Xu H, Guo S, Wang K, Yu DG (2021) Orodispersible membranes from a modified co-axial electrospinning for fast dissolution of diclofenac sodium. Membranes 11(11):802. https://doi.org/10.3390/membranes11110802
  • Ho CC, Chen WS, Shie TY, Lin JN, Kuo C (2008) Novel fabrication of Janus particles from the surfaces of electrospun polymer fibers. Langmuir 24(11):5663-5666. https://doi.org/10.1021/la800282j
  • Wang M, Yu DG, Williams GR, Bligh SWA (2022) Co-loading of inorganic nanoparticles and natural oil in the electrospun Janus nanofibers for a synergetic antibacterial effect. Pharm. 14(6):1208. https://doi.org/10.3390/pharmaceutics14061208
  • Lin T, Wang H, Wang X (2005) Self‐crimping bicomponent nanofibers electrospun from polyacrylonitrile and elastomeric polyurethane. Adv Mater 17(22):2699-2703. https://doi.org/10.1002/adma.200500901
  • Agarwal S, Jiang S (2015) Nanofibers and Electrospinning. In: Kobayashi S, Müllen K (eds) Encyclopedia of Polymeric Nanomaterials. Springer, Berlin, Heidelberg, ss 1-15
  • Peng L (2018). Bicomponent Porous Fibrous Membranes with Special Fiber Morphologies and Properties. Dissertation, Universitaet Bayreuth
  • Bazilevsky AV, Yarin AL, Megaridis CM (2007) Co-electrospinning of core− shell fibers using a single-nozzle technique. Langmuir 23(5):2311-2314. https://doi.org/10.1021/la063194q
  • Liu W, Graham M, Evans EA, Reneker DH (2002) Poly (meta-phenylene isophthalamide) nanofibers: Coating and post processing. Int J Mater Res 17(12):3206-321.2 https://doi.org/10.1557/JMR.2002.0464
  • Bognitzki M, Hou H, Ishaque M, Frese T, Hellwig M, Schwarte C, ... & Greiner A (2000) Polymer, metal, and hybrid nano‐and mesotubes by coating degradable polymer template fibers (TUFT process). Adv Mater 12(9):637-640. https://doi.org/10.1002/(SICI)1521-4095(200005)12:9<637::AID-ADMA637>3.0.CO;2-W
  • Sun Z, Zussman E, Yarin AL, Wendorff JH, Greiner A (2003) Compound core–shell polymer nanofibers by co‐electrospinning. Adv Mat 15(22):1929-193.2 https://doi.org/10.1002/adma.200305136
  • Li D, Xia Y (2004) Direct fabrication of composite and ceramic hollow nanofibers by electrospinning. Nano Lett 4(5):933-938. https://doi.org/10.1021/nl049590f
  • Reznik SN, Yarin AL, Zussman E, Bercovici L (2006) Evolution of a compound droplet attached to a core-shell nozzle under the action of a strong electric field. Phys Fluids 18(6):062101. https://doi.org/10.1063/1.2206747
  • Zussman E, Yarin AL, Bazilevsky AV, Avrahami R, Feldman M (2006) Electrospun polyaniline/poly (methyl methacrylate)‐derived turbostratic carbon micro‐/nanotubes. Adv Mater 18(3):348-353. https://doi.org/10.1002/adma.200501153
  • Zhang J, Choi SW, Kim SS (2011) Micro-and nano-scale hollow TiO2 fibers by co-axial electrospinning: Preparation and gas sensing. J Solid State Chem 184(11):3008-3013. https://doi.org/10.1016/j.jssc.2011.09.014
  • Li M, Zheng Y, Xin B, Xu Y (2020) Co-axial electrospinning: jet motion, core–shell fiber morphology, and structure as a function of material parameters. Ind Eng Chem Res 59(13):6301-6308. https://doi.org/10.1021/acs.iecr.9b05866
  • Liu X, Yang Y, Yu DG, Zhu MJ, Zhao M, Williams GR (2019) Tunable zero-order drug delivery systems created by modified triaxial electrospinning. Chem Eng J 356:886-894. https://doi.org/10.1016/j.cej.2018.09.096
  • Lin MF, Xiong J, Wang J, Parida K, Lee PS (2018) Core-shell nanofiber mats for tactile pressure sensor and nanogenerator applications. Nano Energy 44:248-255. https://doi.org/10.1016/j.nanoen.2017.12.004
  • He Z, Li M, Li Y, Zhu J, Jiang Y, Meng W, ... & Dai L (2018) Flexible electrospun carbon nanofiber embedded with TiO2 as excellent negative electrode for vanadium redox flow battery. Electrochim Acta 281:601-610. https://doi.org/10.1016/j.electacta.2018.06.011
  • Haider A, Haider S, Kang IK (2018) A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arabian J Chem 11(8):1165-1188. https://doi.org/10.1016/j.arabjc.2015.11.015
  • Moghe AK, Gupta BS (2008) Co‐axial electrospinning for nanofiber structures: preparation and applications. Polym Rev 48(2):353-377. https://doi.org/10.1080/15583720802022257
  • Rathore P, Schiffman JD (2020) Beyond the single-nozzle: Co-axial electrospinning enables innovative nanofiber chemistries, geometries, and applications. ACS Appl Mater Interfaces 13(1):48-66. https://doi.org/10.1021/acsami.0c17706
  • Han D, Steckl AJ (2019) Co-axial electrospinning formation of complex polymer fibers and their applications. Chem Plus Chem 84(10):1453-1497. https://doi.org/10.1002/cplu.201900281
  • Wang J, Windbergs M (2019) Controlled dual drug release by co-axial electrospun fibers–impact of the core fluid on drug encapsulation and release. Int J Pharm 556:363-371. https://doi.org/10.1016/j.ijpharm.2018.12.026
  • Nikmaram N, Roohinejad S, Hashemi S, Koubaa M, Barba FJ, Abbaspourrad, A, Greiner, R. (2017) Emulsion-based systems for fabrication of electrospun nanofibers: Food, pharmaceutical and biomedical applications. RSC Adv 7(46):28951-28964. https://doi.org/10.1039/C7RA00179G
  • Giannetti R, Abraham GA, Rivero G (2019) The role of emulsion parameters in tramadol sustained-release from electrospun mats. Mater Sci Eng C 99:1493-1501. https://doi.org/10.1016/j.msec.2019.02.085
  • Di Gesù R, Merlettini A, Gualandi C, Focarete ML (2018) Advances in multidrug delivery from electrospun nanomaterials. In: Focarete M, Tampieri A (eds) In Core-Shell Nanostructures for Drug Delivery and Theranostics, Woodhead Publishing, Sawston, ss 405-430.
  • Abdullah MF, Nuge T, Andriyana A, Ang BC, Muhamad F (2019) Core–shell fibers: design, roles, and controllable release strategies in tissue engineering and drug delivery. Polymers 11(12):2008. https://doi.org/10.3390/polym11122008
  • Khajavi R, Abbasipour MJSI (2012) Electrospinning as a versatile method for fabricating coreshell, hollow and porous nanofibers. Sci Iran 19(6):2029-2034. https://doi.org/10.3390/polym11122008
  • Yarin AL, Zussman E, Wendorff JH, Greiner A (2007) Material encapsulation and transport in core–shell micro/nanofibers, polymer and carbon nanotubes and micro/nanochannels. J Mater Chem 17(25):2585-2599. https://doi.org/10.1039/B618508
  • İşgen HB, Yılmaz SS, Aytac A (2024) The Production of Hollow Nanofibers from PBS/TPU Blends by Co-axial Electrospinning Method. GU J Sci 37(1):64-73. https://doi.org/10.35378/gujs.1199571
  • Wei Z, Zhang Q, Peng M, Wang X, Long S, Yang J (2014) Preparation and drug delivery study of electrospun hollow PES ultrafine fibers with a multilayer wall. Colloid Polym Sci 292:1339-1345. https://doi.org/10.1007/s00396-014-3187-y
  • Khanna I (2012) Drug discovery in pharmaceutical industry: productivity challenges and trends. Drug Discovery Today 17(19-20):1088-1102. https://doi.org/10.1016/j.drudis.2012.05.007
  • Abu Owida H, Al-Nabulsi JI, Alnaimat F, Al Sharah A, Al-Ayyad M, Turab NM, Abdullah M (2022) Advancement of Nanofibrous Mats and Common Useful Drug Delivery Applications. Adv Pharacol Pharm Sci 2022:9073837. https://doi.org/10.1155/2022/9073837
  • Van Norman GA (2019) Phase II trials in drug development and adaptive trial design. JACC: Basic to Translational Science 4(3):428-437. https://doi.org/10.1016/j.jacbts.2019.02.005
  • Poláková L, Širc J, Hobzová R, Cocârță AI, Heřmánková E (2019) Electrospun nanofibers for local anticancer therapy: Review of in vivo activity. Int J Pharm 558:268-283. https://doi.org/10.1016/j.ijpharm.2018.12.059
  • Zheng Y, Li S, Weng Z, Gao C (2015) Hyperbranched polymers: advances from synthesis to applications. Chem Soc Rev 44(12):4091-4130. https://doi.org/10.1039/C4CS00528G
  • Chevalier Y, Bolzinger MA (2013) Emulsions stabilized with solid nanoparticles: Pickering emulsions. Colloids and Surf A:Physicochemical and Engineering Aspects 439:23-34. https://doi.org/10.1016/j.colsurfa.2013.02.054
  • Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE (2001) Biodegradable polymeric nanoparticles as drug delivery devices. J Controlled Release 70(1-2):1-20. https://doi.org/10.1016/S0168-3659(00)00339-4
  • Mickova A, Buzgo M, Benada O, Rampichova M, Fisar Z, Filova E, ... & Amler E (2012) Core/shell nanofibers with embedded liposomes as a drug delivery system. Biomacromolecules 13(4):952-962. https://doi.org/10.1021/bm2018118
  • Kataoka K, Harada A, Nagasaki Y (2012) Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Delivery Rev 64:37-48. https://doi.org/10.1016/S0169-409X(00)00124-1
  • Ulery BT, Nair LS, Laurencin CT (2011) Biomedical applications of biodegradable polymers, J. Polym. Sci. Part B Polym Phys 49:832–864. https://doi.org/ 10.1002/polb.22259
  • Nagarajan S, Bechelany M, Kalkura NS, Miele P, Bohatier CP, Balme S (2019) Electrospun nanofibers for drug delivery in regenerative medicine. In: Mohapatra S, Ranjan S, Dasgupta N, Mishra RK, Thomas S (eds) In Applications of targeted nano drugs and delivery systems, Elsevier, Germany, ss 595-625.
  • Farhaj S, Conway BR, Ghori MU (2023) Nanofibres in Drug Delivery Applications. Fibers 11(2):21. https://doi.org/10.3390/fib11020021
  • URL-1 : https://www.inovenso.com/nanofibers-biomedical-pharmaceutical/ Erişim 26 Kasım 2023
  • Parın FN (2022) Fabrication and novel applications of polymeric biomaterials for tissue scaffolds.
  • Zhang X, Wang C, Liao M, Dai L, Tang Y, Zhang H, ... & Ji P (2019) Aligned electrospun cellulose scaffolds coated with rhBMP-2 for both in vitro and in vivo bone tissue engineering. Carbohydr Polym 213:27-38. https://doi.org/10.1016/j.carbpol.2019.02.038
  • Zhou Y, Zhao Q, Tsai NL, Wang M (2019) Bicomponent nanofibrous scaffolds with dual release of anticancer drugs and biomacromolecules. MRS Communications 9(1):413-420. https://doi.org/10.1557/mrc.2019.23
  • Pilehvar-Soltanahmadi Y, Akbarzadeh A, Moazzez-Lalaklo N, Zarghami N (2016) An update on clinical applications of electrospun nanofibers for skin bioengineering. Artif Cells Nanomed Biotechnol 44(6):1350-1364. https://doi.org/10.3109/21691401.2015.1036999
  • Bian T, Zhao K, Meng Q, Tang Y, Jiao H, Luo J (2019) The construction and performance of multi-level hierarchical hydroxyapatite (HA)/collagen composite implant based on biomimetic bone Haversian motif. Mater Des 162:60-69. https://doi.org/10.1016/j.matdes.2018.11.040
  • Mohamadyar-Toupkanlou F, Vasheghani-Farahani E, Bakhshandeh B, Soleimani M, Ardeshirylajimi A (2015) In Vitro and In Vivo investigations on fibronectin coated and hydroxyapatite incorporated scaffolds. Cell Mol Biol 61(4):1-7. https://doi.org/10.14715/cmb/2015.61.4.1
  • Zhao K, Tang YF, Qin YS, Wei JQ (2011) Porous hydroxyapatite ceramics by ice templating: freezing characteristics and mechanical properties. Ceram Int 37(2):635-639. https://doi.org/10.1016/j.ceramint.2010.10.003
  • Li D, Zhang K, Shi C, Liu L, Yan G, Liu C, ... & Yang B (2018) Small molecules modified biomimetic gelatin/hydroxyapatite nanofibers constructing an ideal osteogenic microenvironment with significantly enhanced cranial bone formation. Int J Nanomed 13:7167-7181. https://doi.org/10.2147/IJN.S174553
  • Chen P, Liu L, Pan J, Mei J, Li C, Zheng Y (2019) Biomimetic composite scaffold of hydroxyapatite/gelatin-chitosan core-shell nanofibers for bone tissue engineering. Mater Sci Eng C 97:325-335. https://doi.org/10.1016/j.msec.2018.12.027.
  • Hou J, Wang Y, Xue H, Dou Y (2018) Biomimetic growth of hydroxyapatite on electrospun CA/PVP core–shell nanofiber membranes. Polymers 10(9):1032. https://doi.org/10.3390/polym10091032
  • Samatya Yılmaz S, Yazıcı Özçelik E, Uzuner H, Kolayli F, Karadenizli A, Aytac A (2023) The PLA-Ag NPs/PU bicomponent nanofiber production for wound dressing applications: Investigation of core/shell displacement effect on antibacterial, cytotoxicity, mechanical, and surface properties. Int J Polym Mater Polym Biomater 73(8):670-687. https://doi.org/10.1080/00914037.2023.2201946
  • Movahedi M, Asefnejad A, Rafienia M, Khorasani MT (2020) Potential of novel electrospun core-shell structured polyurethane/starch (hyaluronic acid) nanofibers for skin tissue engineering: In vitro and in vivo evaluation. Int J Biol Macromol 146:627-637. https://doi.org/10.1016/j.ijbiomac.2019.11.233
  • Chen CH, Chen SH, Chen SH, Chuang ADC, Darshan TG, Chen JP (2023) Hyaluronic acid/platelet rich plasma-infused core-shell nanofiber membrane to prevent postoperative tendon adhesion and promote tendon healing. Int J Biol Macromol 231:123312. https://doi.org/10.1016/j.ijbiomac.2023.123312
  • Yang G, Wang J, Wang Y, Li L, Guo X, Zhou S (2015) An implantable active-targeting micelle-in-nanofiber device for efficient and safe cancer therapy. ACS Nano 9(2):1161-1174. https://doi.org/10.1021/nn504573u
  • Ercelik M, Tekin C, Parin FN, Mutlu B, Dogan HY, Tezcan G, ... & Tunca B (2023) Co-loading of Temozolomide with Oleuropein or rutin into polylactic acid core-shell nanofiber webs inhibit glioblastoma cell by controlled release. Int J Biol Macromol 253:126722. https://doi.org/10.1016/j.ijbiomac.2023.126722
  • Meng Z, Liu Y, Xu K, Sun X, Yu Q, Wu Z, Zhao Z (2021) Biomimetic polydopamine-modified silk fibroin/curcumin nanofibrous scaffolds for chemo-photothermal therapy of bone tumor. ACS Omega 6(34):22213-22223. https://doi.org/10.1021/acsomega.1c02903
  • Rasouli S, Montazeri M, Mashayekhi S, Sadeghi-Soureh S, Dadashpour M, Mousazadeh H, ... & Pilehvar-Soltanahmadi Y (2020) Synergistic anticancer effects of electrospun nanofiber-mediated codelivery of Curcumin and Chrysin: Possible application in prevention of breast cancer local recurrence. J Drug Delivery Sci Technol 55:101402. https://doi.org/10.1016/j.jddst.2019.101402
  • Dai J, Jin J, Yang S, Li G (2017) Doxorubicin-loaded PLA/pearl electrospun nanofibrous scaffold for drug delivery and tumor cell treatment. Mater Res Express 4(7):075403. https://doi.org/10.1088/2053-1591/aa7479
  • Yang B, Hu Y, Huang CH, Ho WC, Yao CY, Huang CH (2019) Effects of bilayer nanofibrous scaffolds containing curcumin/lithospermi radix extract on wound healing in streptozotocin-induced diabetic rats. Polymers 11(11):1745. https://doi.org/10.3390/polym11111745
  • Khan F, Aldhahri M, Hussain MA, Gauthaman K, Memic A, Abuzenadah A, ... & Aldhaheri RW (2018) Encapsulation of 5-flurouracil into PLGA nanofibers and enhanced anticancer effect in combination with Ajwa-dates-extract (Phoenix dactylifera L.). J Biomed Nanotechnol 14(3):553-563. https://doi.org/10.1166/jbn.2018.2515
  • Sabitha M, Rejinold NS, Nair A, Lakshmanan VK, Nair SV, Jayakumar R (2013) Development and evaluation of 5-fluorouracil loaded chitin nanogels for treatment of skin cancer. Carbohydr Polym 91(1):48-57. https://doi.org/10.1016/j.carbpol.2012.07.060
  • Zhu LF, Zheng Y, Fan J, Yao Y, Ahmad Z, Chang MW (2019) A novel core-shell nanofiber drug delivery system intended for the synergistic treatment of melanoma. Eur J Pharm Sci 137:105002. https://doi.org/10.1016/j.ejps.2019.105002
  • Parin FN, Terzioğlu P (2022) Electrospun Porous Biobased Polymer Mats for Biomedical Applications. In: Uthaman A, Thomas S, Li T, Maria H (eds) Advanced Functional Porous Materials: From Macro to Nano Scale Lengths, Springer Nature, Switzerland, ss 539-586.
  • Maleki H, Doostan M, Shojaei S, Doostan M, Stamatis H, Gkantzou E, Bonkdar A (2023) Nanofiber-based systems against skin cancers: Therapeutic and protective approaches. J Drug Delivery Sci Technol 82:104367. https://doi.org/10.1016/j.jddst.2023.104367
  • Yuan C, Long X, Li J, Cai Q (2021) Coaxially electrospun 5-fluorouracil-loaded PLGA/PVP fibrous membrane for skin tumor treatment. Biomed Mater 16(6):065014. https://doi.org/10.1088/1748-605X/ac2887
  • Lin WC, Yeh IT, Niyama E, Huang WR, Ebara M, Wu CS (2018) Electrospun poly (ε-caprolactone) nanofibrous mesh for imiquimod delivery in melanoma therapy. Polymers 10(3):231. https://doi.org/10.3390/polym10030231
  • Kumar MR, Muzzarelli R, Muzzarelli C, Sashiwa H, Domb AJ (2004) Chitosan chemistry and pharmaceutical perspectives. Chem Rev 104(12):6017-6084. https://doi.org/10.1021/cr030441b
  • Yan E, Jiang J, Yang X, Fan L, Wang Y, An Q, ... & Zhang D (2020) pH-sensitive core-shell electrospun nanofibers based on polyvinyl alcohol/polycaprolactone as a potential drug delivery system for the chemotherapy against cervical cancer. J Drug Delivery Sci Technol 55:101455. https://doi.org/10.1016/j.jddst.2019.101455
  • Vocetkova K, Buzgo M, Sovkova V, Rampichova M, Staffa A, Filova E, ... & Amler E (2017) A comparison of high throughput core–shell 2D electrospinning and 3D centrifugal spinning techniques to produce platelet lyophilisate-loaded fibrous scaffolds and their effects on skin cells. Rsc Advances 7(85):53706-53719. https://doi.org/10.1039/C7RA08728D
  • Li Z, Mei S, Dong Y, She F, Li P, Li Y, & Kong L (2021) Multi-functional core-shell nanofibers for wound healing. Nanomater 11(6):1546. https://doi.org/10.3390/nano11061546
  • Pal P, Srivas PK, Dadhich P, Das B, Maulik D, Dhara S (2017) Nano-/microfibrous cotton-wool-like 3D scaffold with core–shell architecture by emulsion electrospinning for skin tissue regeneration. ACS Biomater Sci Eng 3(12):3563-3575. https://doi.org/10.1021/acsbiomaterials.7b00681
  • Liu C, Li X, Xu F, Cong H, Li Z, Song Y, Wang M (2018) Spatio-temporal release of NGF and GDNF from multi-layered nanofibrous bicomponent electrospun scaffolds. J Mater Sci Mater in Med 29:1-13. https://doi.org/10.1007/s10856-018-6105-x
  • Antaby E, Klinkhammer K, Sabantina L (2021) Electrospinning of chitosan for antibacterial applications—Curr Trends Appl Sci 11(24):11937. https://doi.org/10.3390/app112411937
  • Anisiei A, Oancea F, Marin L (2023) Electrospinning of chitosan-based nanofibers: From design to prospective applications. Rev Chem Eng 39(1):31-70. https://doi.org/10.1515/revce-2021-0003
  • Reddy MSB, Ponnamma D, Choudhary R, Sadasivuni KK (2021) A comparative review of natural and synthetic biopolymer composite scaffolds. Polymers 13(7):1105. https://doi.org/10.3390/polym13071105
  • Zhou Y, Dong Q, Yang H, Liu X, Yin X, Tao Y, ... & Xu W (2017) Photocrosslinked maleilated chitosan/methacrylated poly (vinyl alcohol) bicomponent nanofibrous scaffolds for use as potential wound dressings. Carbohydr Polym 168:220-226. https://doi.org/10.1016/j.carbpol.2017.03.044.
  • Zheng X, Liu X, Zha L (2021) Fabrication of ultrafast temperature‐responsive nanofibrous hydrogel with superelasticity and its' on–off'switchable drug releasing capacity. J Appl Polym Sci 138(17):50280. https://doi.org/10.1002/app.50280
  • Xu R, Zhao H, Muhammad H, Dong M, Besenbacher F, Chen M (2017) Dual-delivery of FGF-2/CTGF from silk fibroin/PLCL-PEO coaxial fibers enhances MSC proliferation and fibrogenesis. Sci Rep 7(1):8509. https://doi.org/10.1038/s41598-017-08226-0
  • Shi Q, Hou J, Zhao C, Xin Z, Jin J, Li C, ... & Yin J (2016) A smart core–sheath nanofiber that captures and releases red blood cells from the blood. Nanoscale 8(4):2022-2029. https://doi.org/10.1039/C5NR07070H
  • Zdraveva E, Mijovic B (2023) Frontier Electrospun Fibers for Nanomedical Applications. In: Villarreal-Gómez LJ, (ed) Biotechnology - Biosensors, Biomaterials and Tissue Engineering Annual 1st edn, IntechOpen, United Kingdom, ss 1-28.
  • Liu C, Li X, Zhao Q, Xie Y, Yao X, Wang M, Cao F (2021) Nanofibrous bicomponent scaffolds for the dual delivery of NGF and GDNF: Controlled release of growth factors and their biological effects. J Mater Sci Mater Med 32:1-19. https://doi.org/10.1007/s10856-020-06479-2
  • Dulnik J, Denis P, Sajkiewicz P, Kołbuk D, Choińska E (2016) Biodegradation of bicomponent PCL/gelatin and PCL/collagen nanofibers electrospun from alternative solvent system. Polym Degrad Stab 130:10-21. https://doi.org/10.1016/j.polymdegradstab.2016.05.022
  • Ramalingam R, Dhand C, Mayandi V, Leung CM, Ezhilarasu H, Karuppannan SK, ... & Arunachalam KD (2021) Core–shell structured antimicrobial nanofiber dressings containing herbal extract and antibiotics combination for the prevention of biofilms and promotion of cutaneous wound healing. ACS Appl Mater Interfaces 13(21):24356-24369. https://doi.org/10.1021/acsami.0c20642.
  • Hadisi Z, Farokhi M, Bakhsheshi‐Rad, HR, Jahanshahi M, Hasanpour S, Pagan E, ... & Akbari M (2020) Hyaluronic acid (HA)‐based silk fibroin/zinc oxide core–shell electrospun dressing for burn wound management. Macromol Biosci 20(4):1900328. https://doi.org/10.1002/mabi.201900328
  • Naeimirad M, Zadhoush A, Kotek R, Esmaeely Neisiany R, Nouri Khorasani S, & Ramakrishna S (2018) Recent advances in core/shell bicomponent fibers and nanofibers: A review. J Appl Polym Sci 135(21):46265. https://doi.org/10.1002/app.46265
  • Niu Q, Zeng L, Mu X, Nie J, Ma G (2016) Preparation and characterization of core-shell nanofibers by electrospinning combined with in situ UV photopolymerization. J Ind Eng Chem 34:337-343. https://doi.org/10.1016/j.jiec.2015.12.006
  • Tawfik EA, Craig DQ, Barker SA (2020) Dual drug-loaded co-axial nanofibers for the treatment of corneal abrasion. Int J Pharm 581:119296. https://doi.org/10.1016/j.ijpharm.2020.119296
  • Bhattarai RS, Bachu RD, Boddu SH, Bhaduri S (2018) Biomedical applications of electrospun nanofibers: Drug and nanoparticle delivery. Pharm 11(1):5. https://doi.org/10.3390/pharmaceutics11010005
  • Martin A, Cai J, Schaedel AL, Van der Plas M, Malmsten M, Rades T, Heinz A. (2022) Zein-polycaprolactone core–shell nanofibers for wound healing. Int J Pharm 621:121809. https://doi.org/10.1016/j.ijpharm.2022.121809
  • Wen S, Hu Y, Zhang Y, Huang S, Zuo Y, Min Y (2019) Dual-functional core-shell electrospun mats with precisely controlled release of anti-inflammatory and anti-bacterial agents. Mater Sci Eng C 100:514-522. https://doi.org/10.1016/j.msec.2019.02.076
  • Li R, Cheng Z, Wen R, Zhao X, Yu X, Sun L, ... & Kang L (2018) Novel SA@ Ca 2+/RCSPs core–shell structure nanofibers by electrospinning for wound dressings. RSC Adv 8(28):15558-15566. https://doi.org/10.1039/c8ra00784e
  • Chen S, Ge L, Mueller A, Carlson MA, Teusink MJ, Shuler FD, Xie J (2017) Twisting electrospun nanofiber fine strips into functional sutures for sustained co-delivery of gentamicin and silver. Nanomed Nanotechnol Biol Med 13(4):1435-1445. https://doi.org/10.1016/j.nano.2017.01.016
  • Fazio E, Ridolfo A, Neri G (2019) Thermally activated noble metal Nanoparticles incorporated in electrospun fiber-based drug delivery systems. Curr Nanomater 4(1):21-31. https://doi.org/10.2174/1573407214666180914121929
  • Yan E, Jiang J, Yang X, Fan L, Wang Y, An Q, ... & Zhang D (2020) pH-sensitive core-shell electrospun nanofibers based on polyvinyl alcohol/polycaprolactone as a potential drug delivery system for the chemotherapy against cervical cancer. J Drug Delivery Sci Technol 55:101455. https://doi.org/10.1016/j.jddst.2019.101455
  • Yousefi P, Dini G, Movahedi B, Vaezifar S, Mehdikhani M (2022) Polycaprolactone/chitosan core/shell nanofibrous mat fabricated by electrospinning process as carrier for rosuvastatin drug. Polym Bull 79:1627-1645. https://doi.org/10.1007/s00289-021-03566-4
  • Baghali M, Ziyadi H, Faridi-Majidi R (2022) Fabrication and characterization of core–shell TiO2-containing nanofibers of PCL-Zein by coaxial electrospinning method as an erythromycin drug carrier. Polym Bull 10(49):41924-41934. https://doi.org/10.1007/s00289-021-03591-3
  • Buzgo M, Rampichova M, Vocetkova K, Sovkova V, Lukasova V, Doupnik M, Mickova A, Rustichelli F, Amler E (2017) Emulsion centrifugal spinning for production of 3D drug releasing nanofibres with core/shell structure. RSC Adv 7:1215–1228. https://doi.org/10.1039/C6RA26606A
  • He P, Zhong Q, Ge Y, Guo Z, Tian J, Zhou Y, ... & Zhou C (2018) Dual drug loaded co-axial electrospun PLGA/PVP fiber for guided tissue regeneration under control of infection. Mater Sci Eng C 90:549-556. https://doi.org/10.1016/j.msec.2018.04.014
  • Balusamy B, Senthamizhan A, Uyar T (2017) In vivo safety evaluations of electrospun nanofibers for biomedical applications. In: Uyar T, Kny E (ed) In Electrospun Materials for Tissue Engineering and Biomedical Applications 1st edn, Woodhead Publishing, Sawston, ss 101-113.
  • Wijeyaratne SM, Kannangara L (2011) Safety and efficacy of electrospun polycarbonate-urethane vascular graft for early hemodialysis access: first clinical results in man. J Vasc Access 12(1):28-35. https://doi.org/10.5301/jva.2011.6278.
  • Kossovich LY, Salkovskiy Y, Kirillova IV (2010) Electrospun chitosan nanofiber materials as burn dressing. In 6th World Congress of Biomechanics (WCB 2010). August 1-6, 2010 Singapore: In Conjunction with 14th International Conference on Biomedical Engineering (ICBME) and 5th Asia Pacific Conference on Biomechanics (APBiomech) ss. 1212-1214 Springer Berlin Heidelberg.
  • URL-2 https://www.clinicaltrials.gov/ Erişim 26 Kasım 2023
  • Abdul Hameed MM, Mohamed Khan SAP, Thamer BM, Al-Enizi A, Aldalbahi A, El-Hamshary H, El-Newehy MH (2020) Core-shell nanofibers from poly (vinyl alcohol) based biopolymers using emulsion electrospinning as drug delivery system for cephalexin drug. J Macromol Sci Part A 58(2):130-144. https://doi.org/10.1080/10601325.2020.1832517

Bi-component nanofibröz iskelelerin ve ilaç salım uygulamalarının mini incelemesi

Yıl 2024, Cilt: 4 Sayı: 2, 391 - 413, 31.07.2024
https://doi.org/10.61112/jiens.1417524

Öz

İlaç salım sistemleri, ilacın etkinliğini artırmak ve etkilenen bölgeyi iyileştirmek için gerçekleştirir. Elektroçekilmiş nanolifler, yüksek özgül yüzey alanı, kolay işleme, hafif malzeme nedeniyle iskele olarak güçlü ilaç taşıyıcılarıdır. Fonksiyonel biyoaktif maddeleri kapsülleyen lifli iskeleler, ilaç verme uygulamaları için önemlidir ve hidrojeller, mikro / nanobeadler, filmler, geleneksel lifler ve süngerler gibi çeşitli taşıyıcı malzemelere göre daha yüksek kapsülleme verimliliği ve daha yüksek ilaç yükleme kapasitesi gösterirler. İlaç yüklemesinin büyük ölçüde polimer matrisinin yüzeyinde gerçekleşmediği iki bileşenli elektroçekim olan geleneksel elektroçekim ile karşılaştırıldığında, çekirdek kabuklu nanofiberler, ilacın çekirdek katmana yüklenmesi nedeniyle gecikmeli salım ve patlama salınımında azalma gösterir. Bu inceleme makalesinin amacı, ilaç yüklü iki bileşenli nanofiberlerin yapı çekirdeği-kabuğu, yan yana, içi boş nanofiberler ve ayrıca emülsiyon nanofiberlerindeki üretimini ve uygulamalarını eş eksenli nozullar kullanarak araştırmaktır. Ayrıca, çalışma koşulları ve polimer özellikleri gibi bu elektrospinning işleminin yanı sıra elde edilen nanoliflerin ilaç verme profilini etkileyen parametreler kısaca özetlenmiştir. Nanolifler üzerindeki sınırlı klinik çalışmalar tartışılmıştır. Sonunda, elektroçekim prosesindeki ilerlemeler için sorunlara, olasılıklara ve yeni yaklaşımlara ilişkin perspektifler de sunulmuştur.

Kaynakça

  • Lv H, Yu, DG, Wang M, Ning T (2021) Nanofabrication of Janus fibers through side-by-side electrospinning-A mini review. Materials Highlights 2(1-2):18-22. https://doi.org/10.2991/mathi.k.210212.001
  • Walther A, Muller AH (2013) Janus particles: synthesis, self-assembly, physical properties, and applications. Chem Rev 113(7):5194-5261. https://doi.org/10.1021/cr300089t
  • Yu DG, Li JJ, Zhang M, Williams GR (2017) High-quality Janus nanofibers prepared using three-fluid electrospinning. Chem Commun 53(33):4542-4545. https://doi.org/10.1039/C7CC01661A
  • Ciftci F, Duygulu N, Yilmazer Y, Karavelioğlu Z, Çakır Koç R, Gündüz O, Ustündag CB (2023) Antibacterial and cellular behavior of PLA-based bacitracin and zataria multiflora nanofibers produced by electrospinning method. Int J Polym Mater Polym Biomater 72(4):319-334. https://doi.org/10.1080/00914037.2021.2008391
  • Singh M, Chauhan D, Das AK, Iqbal Z, Solanki PR (2021) PVA/PMMA polymer blended composite electrospun nanofibers mat and their potential use as an anti‐biofilm product. J Appl Polym Sci 138(18):50340. https://doi.org/10.1002/app.50340
  • Xue J, Wu T, Dai Y, Xia Y (2019) Electrospinning and electrospun nanofibers: Methods, materials, and applications. Chem Rev 119(8):5298-5415. https://doi.org/10.1021/acs.chemrev.8b00593
  • Parin FN (2022) Retrospective, Perspective and Prospective of B-Complex Vitamins: Encapsulation of Vitamins and Release from Vitamin-Loaded Polymers. In: Guy LeBlanc J (ed) B-Complex Vitamins: Sources, Intakes and Novel Applications, 1st edn, IntechOpen, United Kingdom, ss 101-122.
  • Zhang X, Shi X, Gautrot JE, Peijs T (2021) Nanoengineered electrospun fibers and their biomedical applications: a review. Nanocomposites 7(1):1-34. https://doi.org/10.1080/20550324.2020.1857121
  • Luraghi A, Peri F, Moroni L (2021) Electrospinning for drug delivery applications: A review. J Controlled Release 334:463-484. https://doi.org/10.1016/j.jconrel.2021.03.033
  • Chien AT, Gulgunje PV, Chae HG, Joshi AS, Moon J, Feng B, Kumar S (2013) Functional polymer–polymer/carbon nanotube bi-component fibers. Polymer 54(22):6210-6217. https://doi.org/10.1016/j.polymer.2013.08.061
  • Zhao P, Chen W, Feng Z, Liu Y, Liu P, Xie Y, Yu DG (2022) Electrospun nanofibers for periodontal treatment: A recent progress. Int J Nanomed 17:4137-4162. https://doi.org/10.2147/IJN.S370340
  • Chen W, Zhao P, Yang Y, Yu DG (2022) Electrospun beads-on-the-string nanoproducts: Preparation and drug delivery application. Curr Drug Deliv 20(9):1224-1240. https://doi.org/10.2174/1567201819666220525095844
  • Liu Y, Chen X, Liu Y, Gao Y, Liu P (2022) Electrospun co-axial fibers to optimize the release of poorly water-soluble drug. Polymers 14(3):469. https://doi.org/10.3390/polym14030469
  • Ning T, Zhou Y, Xu H, Guo S, Wang K, Yu DG (2021) Orodispersible membranes from a modified co-axial electrospinning for fast dissolution of diclofenac sodium. Membranes 11(11):802. https://doi.org/10.3390/membranes11110802
  • Ho CC, Chen WS, Shie TY, Lin JN, Kuo C (2008) Novel fabrication of Janus particles from the surfaces of electrospun polymer fibers. Langmuir 24(11):5663-5666. https://doi.org/10.1021/la800282j
  • Wang M, Yu DG, Williams GR, Bligh SWA (2022) Co-loading of inorganic nanoparticles and natural oil in the electrospun Janus nanofibers for a synergetic antibacterial effect. Pharm. 14(6):1208. https://doi.org/10.3390/pharmaceutics14061208
  • Lin T, Wang H, Wang X (2005) Self‐crimping bicomponent nanofibers electrospun from polyacrylonitrile and elastomeric polyurethane. Adv Mater 17(22):2699-2703. https://doi.org/10.1002/adma.200500901
  • Agarwal S, Jiang S (2015) Nanofibers and Electrospinning. In: Kobayashi S, Müllen K (eds) Encyclopedia of Polymeric Nanomaterials. Springer, Berlin, Heidelberg, ss 1-15
  • Peng L (2018). Bicomponent Porous Fibrous Membranes with Special Fiber Morphologies and Properties. Dissertation, Universitaet Bayreuth
  • Bazilevsky AV, Yarin AL, Megaridis CM (2007) Co-electrospinning of core− shell fibers using a single-nozzle technique. Langmuir 23(5):2311-2314. https://doi.org/10.1021/la063194q
  • Liu W, Graham M, Evans EA, Reneker DH (2002) Poly (meta-phenylene isophthalamide) nanofibers: Coating and post processing. Int J Mater Res 17(12):3206-321.2 https://doi.org/10.1557/JMR.2002.0464
  • Bognitzki M, Hou H, Ishaque M, Frese T, Hellwig M, Schwarte C, ... & Greiner A (2000) Polymer, metal, and hybrid nano‐and mesotubes by coating degradable polymer template fibers (TUFT process). Adv Mater 12(9):637-640. https://doi.org/10.1002/(SICI)1521-4095(200005)12:9<637::AID-ADMA637>3.0.CO;2-W
  • Sun Z, Zussman E, Yarin AL, Wendorff JH, Greiner A (2003) Compound core–shell polymer nanofibers by co‐electrospinning. Adv Mat 15(22):1929-193.2 https://doi.org/10.1002/adma.200305136
  • Li D, Xia Y (2004) Direct fabrication of composite and ceramic hollow nanofibers by electrospinning. Nano Lett 4(5):933-938. https://doi.org/10.1021/nl049590f
  • Reznik SN, Yarin AL, Zussman E, Bercovici L (2006) Evolution of a compound droplet attached to a core-shell nozzle under the action of a strong electric field. Phys Fluids 18(6):062101. https://doi.org/10.1063/1.2206747
  • Zussman E, Yarin AL, Bazilevsky AV, Avrahami R, Feldman M (2006) Electrospun polyaniline/poly (methyl methacrylate)‐derived turbostratic carbon micro‐/nanotubes. Adv Mater 18(3):348-353. https://doi.org/10.1002/adma.200501153
  • Zhang J, Choi SW, Kim SS (2011) Micro-and nano-scale hollow TiO2 fibers by co-axial electrospinning: Preparation and gas sensing. J Solid State Chem 184(11):3008-3013. https://doi.org/10.1016/j.jssc.2011.09.014
  • Li M, Zheng Y, Xin B, Xu Y (2020) Co-axial electrospinning: jet motion, core–shell fiber morphology, and structure as a function of material parameters. Ind Eng Chem Res 59(13):6301-6308. https://doi.org/10.1021/acs.iecr.9b05866
  • Liu X, Yang Y, Yu DG, Zhu MJ, Zhao M, Williams GR (2019) Tunable zero-order drug delivery systems created by modified triaxial electrospinning. Chem Eng J 356:886-894. https://doi.org/10.1016/j.cej.2018.09.096
  • Lin MF, Xiong J, Wang J, Parida K, Lee PS (2018) Core-shell nanofiber mats for tactile pressure sensor and nanogenerator applications. Nano Energy 44:248-255. https://doi.org/10.1016/j.nanoen.2017.12.004
  • He Z, Li M, Li Y, Zhu J, Jiang Y, Meng W, ... & Dai L (2018) Flexible electrospun carbon nanofiber embedded with TiO2 as excellent negative electrode for vanadium redox flow battery. Electrochim Acta 281:601-610. https://doi.org/10.1016/j.electacta.2018.06.011
  • Haider A, Haider S, Kang IK (2018) A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arabian J Chem 11(8):1165-1188. https://doi.org/10.1016/j.arabjc.2015.11.015
  • Moghe AK, Gupta BS (2008) Co‐axial electrospinning for nanofiber structures: preparation and applications. Polym Rev 48(2):353-377. https://doi.org/10.1080/15583720802022257
  • Rathore P, Schiffman JD (2020) Beyond the single-nozzle: Co-axial electrospinning enables innovative nanofiber chemistries, geometries, and applications. ACS Appl Mater Interfaces 13(1):48-66. https://doi.org/10.1021/acsami.0c17706
  • Han D, Steckl AJ (2019) Co-axial electrospinning formation of complex polymer fibers and their applications. Chem Plus Chem 84(10):1453-1497. https://doi.org/10.1002/cplu.201900281
  • Wang J, Windbergs M (2019) Controlled dual drug release by co-axial electrospun fibers–impact of the core fluid on drug encapsulation and release. Int J Pharm 556:363-371. https://doi.org/10.1016/j.ijpharm.2018.12.026
  • Nikmaram N, Roohinejad S, Hashemi S, Koubaa M, Barba FJ, Abbaspourrad, A, Greiner, R. (2017) Emulsion-based systems for fabrication of electrospun nanofibers: Food, pharmaceutical and biomedical applications. RSC Adv 7(46):28951-28964. https://doi.org/10.1039/C7RA00179G
  • Giannetti R, Abraham GA, Rivero G (2019) The role of emulsion parameters in tramadol sustained-release from electrospun mats. Mater Sci Eng C 99:1493-1501. https://doi.org/10.1016/j.msec.2019.02.085
  • Di Gesù R, Merlettini A, Gualandi C, Focarete ML (2018) Advances in multidrug delivery from electrospun nanomaterials. In: Focarete M, Tampieri A (eds) In Core-Shell Nanostructures for Drug Delivery and Theranostics, Woodhead Publishing, Sawston, ss 405-430.
  • Abdullah MF, Nuge T, Andriyana A, Ang BC, Muhamad F (2019) Core–shell fibers: design, roles, and controllable release strategies in tissue engineering and drug delivery. Polymers 11(12):2008. https://doi.org/10.3390/polym11122008
  • Khajavi R, Abbasipour MJSI (2012) Electrospinning as a versatile method for fabricating coreshell, hollow and porous nanofibers. Sci Iran 19(6):2029-2034. https://doi.org/10.3390/polym11122008
  • Yarin AL, Zussman E, Wendorff JH, Greiner A (2007) Material encapsulation and transport in core–shell micro/nanofibers, polymer and carbon nanotubes and micro/nanochannels. J Mater Chem 17(25):2585-2599. https://doi.org/10.1039/B618508
  • İşgen HB, Yılmaz SS, Aytac A (2024) The Production of Hollow Nanofibers from PBS/TPU Blends by Co-axial Electrospinning Method. GU J Sci 37(1):64-73. https://doi.org/10.35378/gujs.1199571
  • Wei Z, Zhang Q, Peng M, Wang X, Long S, Yang J (2014) Preparation and drug delivery study of electrospun hollow PES ultrafine fibers with a multilayer wall. Colloid Polym Sci 292:1339-1345. https://doi.org/10.1007/s00396-014-3187-y
  • Khanna I (2012) Drug discovery in pharmaceutical industry: productivity challenges and trends. Drug Discovery Today 17(19-20):1088-1102. https://doi.org/10.1016/j.drudis.2012.05.007
  • Abu Owida H, Al-Nabulsi JI, Alnaimat F, Al Sharah A, Al-Ayyad M, Turab NM, Abdullah M (2022) Advancement of Nanofibrous Mats and Common Useful Drug Delivery Applications. Adv Pharacol Pharm Sci 2022:9073837. https://doi.org/10.1155/2022/9073837
  • Van Norman GA (2019) Phase II trials in drug development and adaptive trial design. JACC: Basic to Translational Science 4(3):428-437. https://doi.org/10.1016/j.jacbts.2019.02.005
  • Poláková L, Širc J, Hobzová R, Cocârță AI, Heřmánková E (2019) Electrospun nanofibers for local anticancer therapy: Review of in vivo activity. Int J Pharm 558:268-283. https://doi.org/10.1016/j.ijpharm.2018.12.059
  • Zheng Y, Li S, Weng Z, Gao C (2015) Hyperbranched polymers: advances from synthesis to applications. Chem Soc Rev 44(12):4091-4130. https://doi.org/10.1039/C4CS00528G
  • Chevalier Y, Bolzinger MA (2013) Emulsions stabilized with solid nanoparticles: Pickering emulsions. Colloids and Surf A:Physicochemical and Engineering Aspects 439:23-34. https://doi.org/10.1016/j.colsurfa.2013.02.054
  • Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE (2001) Biodegradable polymeric nanoparticles as drug delivery devices. J Controlled Release 70(1-2):1-20. https://doi.org/10.1016/S0168-3659(00)00339-4
  • Mickova A, Buzgo M, Benada O, Rampichova M, Fisar Z, Filova E, ... & Amler E (2012) Core/shell nanofibers with embedded liposomes as a drug delivery system. Biomacromolecules 13(4):952-962. https://doi.org/10.1021/bm2018118
  • Kataoka K, Harada A, Nagasaki Y (2012) Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Delivery Rev 64:37-48. https://doi.org/10.1016/S0169-409X(00)00124-1
  • Ulery BT, Nair LS, Laurencin CT (2011) Biomedical applications of biodegradable polymers, J. Polym. Sci. Part B Polym Phys 49:832–864. https://doi.org/ 10.1002/polb.22259
  • Nagarajan S, Bechelany M, Kalkura NS, Miele P, Bohatier CP, Balme S (2019) Electrospun nanofibers for drug delivery in regenerative medicine. In: Mohapatra S, Ranjan S, Dasgupta N, Mishra RK, Thomas S (eds) In Applications of targeted nano drugs and delivery systems, Elsevier, Germany, ss 595-625.
  • Farhaj S, Conway BR, Ghori MU (2023) Nanofibres in Drug Delivery Applications. Fibers 11(2):21. https://doi.org/10.3390/fib11020021
  • URL-1 : https://www.inovenso.com/nanofibers-biomedical-pharmaceutical/ Erişim 26 Kasım 2023
  • Parın FN (2022) Fabrication and novel applications of polymeric biomaterials for tissue scaffolds.
  • Zhang X, Wang C, Liao M, Dai L, Tang Y, Zhang H, ... & Ji P (2019) Aligned electrospun cellulose scaffolds coated with rhBMP-2 for both in vitro and in vivo bone tissue engineering. Carbohydr Polym 213:27-38. https://doi.org/10.1016/j.carbpol.2019.02.038
  • Zhou Y, Zhao Q, Tsai NL, Wang M (2019) Bicomponent nanofibrous scaffolds with dual release of anticancer drugs and biomacromolecules. MRS Communications 9(1):413-420. https://doi.org/10.1557/mrc.2019.23
  • Pilehvar-Soltanahmadi Y, Akbarzadeh A, Moazzez-Lalaklo N, Zarghami N (2016) An update on clinical applications of electrospun nanofibers for skin bioengineering. Artif Cells Nanomed Biotechnol 44(6):1350-1364. https://doi.org/10.3109/21691401.2015.1036999
  • Bian T, Zhao K, Meng Q, Tang Y, Jiao H, Luo J (2019) The construction and performance of multi-level hierarchical hydroxyapatite (HA)/collagen composite implant based on biomimetic bone Haversian motif. Mater Des 162:60-69. https://doi.org/10.1016/j.matdes.2018.11.040
  • Mohamadyar-Toupkanlou F, Vasheghani-Farahani E, Bakhshandeh B, Soleimani M, Ardeshirylajimi A (2015) In Vitro and In Vivo investigations on fibronectin coated and hydroxyapatite incorporated scaffolds. Cell Mol Biol 61(4):1-7. https://doi.org/10.14715/cmb/2015.61.4.1
  • Zhao K, Tang YF, Qin YS, Wei JQ (2011) Porous hydroxyapatite ceramics by ice templating: freezing characteristics and mechanical properties. Ceram Int 37(2):635-639. https://doi.org/10.1016/j.ceramint.2010.10.003
  • Li D, Zhang K, Shi C, Liu L, Yan G, Liu C, ... & Yang B (2018) Small molecules modified biomimetic gelatin/hydroxyapatite nanofibers constructing an ideal osteogenic microenvironment with significantly enhanced cranial bone formation. Int J Nanomed 13:7167-7181. https://doi.org/10.2147/IJN.S174553
  • Chen P, Liu L, Pan J, Mei J, Li C, Zheng Y (2019) Biomimetic composite scaffold of hydroxyapatite/gelatin-chitosan core-shell nanofibers for bone tissue engineering. Mater Sci Eng C 97:325-335. https://doi.org/10.1016/j.msec.2018.12.027.
  • Hou J, Wang Y, Xue H, Dou Y (2018) Biomimetic growth of hydroxyapatite on electrospun CA/PVP core–shell nanofiber membranes. Polymers 10(9):1032. https://doi.org/10.3390/polym10091032
  • Samatya Yılmaz S, Yazıcı Özçelik E, Uzuner H, Kolayli F, Karadenizli A, Aytac A (2023) The PLA-Ag NPs/PU bicomponent nanofiber production for wound dressing applications: Investigation of core/shell displacement effect on antibacterial, cytotoxicity, mechanical, and surface properties. Int J Polym Mater Polym Biomater 73(8):670-687. https://doi.org/10.1080/00914037.2023.2201946
  • Movahedi M, Asefnejad A, Rafienia M, Khorasani MT (2020) Potential of novel electrospun core-shell structured polyurethane/starch (hyaluronic acid) nanofibers for skin tissue engineering: In vitro and in vivo evaluation. Int J Biol Macromol 146:627-637. https://doi.org/10.1016/j.ijbiomac.2019.11.233
  • Chen CH, Chen SH, Chen SH, Chuang ADC, Darshan TG, Chen JP (2023) Hyaluronic acid/platelet rich plasma-infused core-shell nanofiber membrane to prevent postoperative tendon adhesion and promote tendon healing. Int J Biol Macromol 231:123312. https://doi.org/10.1016/j.ijbiomac.2023.123312
  • Yang G, Wang J, Wang Y, Li L, Guo X, Zhou S (2015) An implantable active-targeting micelle-in-nanofiber device for efficient and safe cancer therapy. ACS Nano 9(2):1161-1174. https://doi.org/10.1021/nn504573u
  • Ercelik M, Tekin C, Parin FN, Mutlu B, Dogan HY, Tezcan G, ... & Tunca B (2023) Co-loading of Temozolomide with Oleuropein or rutin into polylactic acid core-shell nanofiber webs inhibit glioblastoma cell by controlled release. Int J Biol Macromol 253:126722. https://doi.org/10.1016/j.ijbiomac.2023.126722
  • Meng Z, Liu Y, Xu K, Sun X, Yu Q, Wu Z, Zhao Z (2021) Biomimetic polydopamine-modified silk fibroin/curcumin nanofibrous scaffolds for chemo-photothermal therapy of bone tumor. ACS Omega 6(34):22213-22223. https://doi.org/10.1021/acsomega.1c02903
  • Rasouli S, Montazeri M, Mashayekhi S, Sadeghi-Soureh S, Dadashpour M, Mousazadeh H, ... & Pilehvar-Soltanahmadi Y (2020) Synergistic anticancer effects of electrospun nanofiber-mediated codelivery of Curcumin and Chrysin: Possible application in prevention of breast cancer local recurrence. J Drug Delivery Sci Technol 55:101402. https://doi.org/10.1016/j.jddst.2019.101402
  • Dai J, Jin J, Yang S, Li G (2017) Doxorubicin-loaded PLA/pearl electrospun nanofibrous scaffold for drug delivery and tumor cell treatment. Mater Res Express 4(7):075403. https://doi.org/10.1088/2053-1591/aa7479
  • Yang B, Hu Y, Huang CH, Ho WC, Yao CY, Huang CH (2019) Effects of bilayer nanofibrous scaffolds containing curcumin/lithospermi radix extract on wound healing in streptozotocin-induced diabetic rats. Polymers 11(11):1745. https://doi.org/10.3390/polym11111745
  • Khan F, Aldhahri M, Hussain MA, Gauthaman K, Memic A, Abuzenadah A, ... & Aldhaheri RW (2018) Encapsulation of 5-flurouracil into PLGA nanofibers and enhanced anticancer effect in combination with Ajwa-dates-extract (Phoenix dactylifera L.). J Biomed Nanotechnol 14(3):553-563. https://doi.org/10.1166/jbn.2018.2515
  • Sabitha M, Rejinold NS, Nair A, Lakshmanan VK, Nair SV, Jayakumar R (2013) Development and evaluation of 5-fluorouracil loaded chitin nanogels for treatment of skin cancer. Carbohydr Polym 91(1):48-57. https://doi.org/10.1016/j.carbpol.2012.07.060
  • Zhu LF, Zheng Y, Fan J, Yao Y, Ahmad Z, Chang MW (2019) A novel core-shell nanofiber drug delivery system intended for the synergistic treatment of melanoma. Eur J Pharm Sci 137:105002. https://doi.org/10.1016/j.ejps.2019.105002
  • Parin FN, Terzioğlu P (2022) Electrospun Porous Biobased Polymer Mats for Biomedical Applications. In: Uthaman A, Thomas S, Li T, Maria H (eds) Advanced Functional Porous Materials: From Macro to Nano Scale Lengths, Springer Nature, Switzerland, ss 539-586.
  • Maleki H, Doostan M, Shojaei S, Doostan M, Stamatis H, Gkantzou E, Bonkdar A (2023) Nanofiber-based systems against skin cancers: Therapeutic and protective approaches. J Drug Delivery Sci Technol 82:104367. https://doi.org/10.1016/j.jddst.2023.104367
  • Yuan C, Long X, Li J, Cai Q (2021) Coaxially electrospun 5-fluorouracil-loaded PLGA/PVP fibrous membrane for skin tumor treatment. Biomed Mater 16(6):065014. https://doi.org/10.1088/1748-605X/ac2887
  • Lin WC, Yeh IT, Niyama E, Huang WR, Ebara M, Wu CS (2018) Electrospun poly (ε-caprolactone) nanofibrous mesh for imiquimod delivery in melanoma therapy. Polymers 10(3):231. https://doi.org/10.3390/polym10030231
  • Kumar MR, Muzzarelli R, Muzzarelli C, Sashiwa H, Domb AJ (2004) Chitosan chemistry and pharmaceutical perspectives. Chem Rev 104(12):6017-6084. https://doi.org/10.1021/cr030441b
  • Yan E, Jiang J, Yang X, Fan L, Wang Y, An Q, ... & Zhang D (2020) pH-sensitive core-shell electrospun nanofibers based on polyvinyl alcohol/polycaprolactone as a potential drug delivery system for the chemotherapy against cervical cancer. J Drug Delivery Sci Technol 55:101455. https://doi.org/10.1016/j.jddst.2019.101455
  • Vocetkova K, Buzgo M, Sovkova V, Rampichova M, Staffa A, Filova E, ... & Amler E (2017) A comparison of high throughput core–shell 2D electrospinning and 3D centrifugal spinning techniques to produce platelet lyophilisate-loaded fibrous scaffolds and their effects on skin cells. Rsc Advances 7(85):53706-53719. https://doi.org/10.1039/C7RA08728D
  • Li Z, Mei S, Dong Y, She F, Li P, Li Y, & Kong L (2021) Multi-functional core-shell nanofibers for wound healing. Nanomater 11(6):1546. https://doi.org/10.3390/nano11061546
  • Pal P, Srivas PK, Dadhich P, Das B, Maulik D, Dhara S (2017) Nano-/microfibrous cotton-wool-like 3D scaffold with core–shell architecture by emulsion electrospinning for skin tissue regeneration. ACS Biomater Sci Eng 3(12):3563-3575. https://doi.org/10.1021/acsbiomaterials.7b00681
  • Liu C, Li X, Xu F, Cong H, Li Z, Song Y, Wang M (2018) Spatio-temporal release of NGF and GDNF from multi-layered nanofibrous bicomponent electrospun scaffolds. J Mater Sci Mater in Med 29:1-13. https://doi.org/10.1007/s10856-018-6105-x
  • Antaby E, Klinkhammer K, Sabantina L (2021) Electrospinning of chitosan for antibacterial applications—Curr Trends Appl Sci 11(24):11937. https://doi.org/10.3390/app112411937
  • Anisiei A, Oancea F, Marin L (2023) Electrospinning of chitosan-based nanofibers: From design to prospective applications. Rev Chem Eng 39(1):31-70. https://doi.org/10.1515/revce-2021-0003
  • Reddy MSB, Ponnamma D, Choudhary R, Sadasivuni KK (2021) A comparative review of natural and synthetic biopolymer composite scaffolds. Polymers 13(7):1105. https://doi.org/10.3390/polym13071105
  • Zhou Y, Dong Q, Yang H, Liu X, Yin X, Tao Y, ... & Xu W (2017) Photocrosslinked maleilated chitosan/methacrylated poly (vinyl alcohol) bicomponent nanofibrous scaffolds for use as potential wound dressings. Carbohydr Polym 168:220-226. https://doi.org/10.1016/j.carbpol.2017.03.044.
  • Zheng X, Liu X, Zha L (2021) Fabrication of ultrafast temperature‐responsive nanofibrous hydrogel with superelasticity and its' on–off'switchable drug releasing capacity. J Appl Polym Sci 138(17):50280. https://doi.org/10.1002/app.50280
  • Xu R, Zhao H, Muhammad H, Dong M, Besenbacher F, Chen M (2017) Dual-delivery of FGF-2/CTGF from silk fibroin/PLCL-PEO coaxial fibers enhances MSC proliferation and fibrogenesis. Sci Rep 7(1):8509. https://doi.org/10.1038/s41598-017-08226-0
  • Shi Q, Hou J, Zhao C, Xin Z, Jin J, Li C, ... & Yin J (2016) A smart core–sheath nanofiber that captures and releases red blood cells from the blood. Nanoscale 8(4):2022-2029. https://doi.org/10.1039/C5NR07070H
  • Zdraveva E, Mijovic B (2023) Frontier Electrospun Fibers for Nanomedical Applications. In: Villarreal-Gómez LJ, (ed) Biotechnology - Biosensors, Biomaterials and Tissue Engineering Annual 1st edn, IntechOpen, United Kingdom, ss 1-28.
  • Liu C, Li X, Zhao Q, Xie Y, Yao X, Wang M, Cao F (2021) Nanofibrous bicomponent scaffolds for the dual delivery of NGF and GDNF: Controlled release of growth factors and their biological effects. J Mater Sci Mater Med 32:1-19. https://doi.org/10.1007/s10856-020-06479-2
  • Dulnik J, Denis P, Sajkiewicz P, Kołbuk D, Choińska E (2016) Biodegradation of bicomponent PCL/gelatin and PCL/collagen nanofibers electrospun from alternative solvent system. Polym Degrad Stab 130:10-21. https://doi.org/10.1016/j.polymdegradstab.2016.05.022
  • Ramalingam R, Dhand C, Mayandi V, Leung CM, Ezhilarasu H, Karuppannan SK, ... & Arunachalam KD (2021) Core–shell structured antimicrobial nanofiber dressings containing herbal extract and antibiotics combination for the prevention of biofilms and promotion of cutaneous wound healing. ACS Appl Mater Interfaces 13(21):24356-24369. https://doi.org/10.1021/acsami.0c20642.
  • Hadisi Z, Farokhi M, Bakhsheshi‐Rad, HR, Jahanshahi M, Hasanpour S, Pagan E, ... & Akbari M (2020) Hyaluronic acid (HA)‐based silk fibroin/zinc oxide core–shell electrospun dressing for burn wound management. Macromol Biosci 20(4):1900328. https://doi.org/10.1002/mabi.201900328
  • Naeimirad M, Zadhoush A, Kotek R, Esmaeely Neisiany R, Nouri Khorasani S, & Ramakrishna S (2018) Recent advances in core/shell bicomponent fibers and nanofibers: A review. J Appl Polym Sci 135(21):46265. https://doi.org/10.1002/app.46265
  • Niu Q, Zeng L, Mu X, Nie J, Ma G (2016) Preparation and characterization of core-shell nanofibers by electrospinning combined with in situ UV photopolymerization. J Ind Eng Chem 34:337-343. https://doi.org/10.1016/j.jiec.2015.12.006
  • Tawfik EA, Craig DQ, Barker SA (2020) Dual drug-loaded co-axial nanofibers for the treatment of corneal abrasion. Int J Pharm 581:119296. https://doi.org/10.1016/j.ijpharm.2020.119296
  • Bhattarai RS, Bachu RD, Boddu SH, Bhaduri S (2018) Biomedical applications of electrospun nanofibers: Drug and nanoparticle delivery. Pharm 11(1):5. https://doi.org/10.3390/pharmaceutics11010005
  • Martin A, Cai J, Schaedel AL, Van der Plas M, Malmsten M, Rades T, Heinz A. (2022) Zein-polycaprolactone core–shell nanofibers for wound healing. Int J Pharm 621:121809. https://doi.org/10.1016/j.ijpharm.2022.121809
  • Wen S, Hu Y, Zhang Y, Huang S, Zuo Y, Min Y (2019) Dual-functional core-shell electrospun mats with precisely controlled release of anti-inflammatory and anti-bacterial agents. Mater Sci Eng C 100:514-522. https://doi.org/10.1016/j.msec.2019.02.076
  • Li R, Cheng Z, Wen R, Zhao X, Yu X, Sun L, ... & Kang L (2018) Novel SA@ Ca 2+/RCSPs core–shell structure nanofibers by electrospinning for wound dressings. RSC Adv 8(28):15558-15566. https://doi.org/10.1039/c8ra00784e
  • Chen S, Ge L, Mueller A, Carlson MA, Teusink MJ, Shuler FD, Xie J (2017) Twisting electrospun nanofiber fine strips into functional sutures for sustained co-delivery of gentamicin and silver. Nanomed Nanotechnol Biol Med 13(4):1435-1445. https://doi.org/10.1016/j.nano.2017.01.016
  • Fazio E, Ridolfo A, Neri G (2019) Thermally activated noble metal Nanoparticles incorporated in electrospun fiber-based drug delivery systems. Curr Nanomater 4(1):21-31. https://doi.org/10.2174/1573407214666180914121929
  • Yan E, Jiang J, Yang X, Fan L, Wang Y, An Q, ... & Zhang D (2020) pH-sensitive core-shell electrospun nanofibers based on polyvinyl alcohol/polycaprolactone as a potential drug delivery system for the chemotherapy against cervical cancer. J Drug Delivery Sci Technol 55:101455. https://doi.org/10.1016/j.jddst.2019.101455
  • Yousefi P, Dini G, Movahedi B, Vaezifar S, Mehdikhani M (2022) Polycaprolactone/chitosan core/shell nanofibrous mat fabricated by electrospinning process as carrier for rosuvastatin drug. Polym Bull 79:1627-1645. https://doi.org/10.1007/s00289-021-03566-4
  • Baghali M, Ziyadi H, Faridi-Majidi R (2022) Fabrication and characterization of core–shell TiO2-containing nanofibers of PCL-Zein by coaxial electrospinning method as an erythromycin drug carrier. Polym Bull 10(49):41924-41934. https://doi.org/10.1007/s00289-021-03591-3
  • Buzgo M, Rampichova M, Vocetkova K, Sovkova V, Lukasova V, Doupnik M, Mickova A, Rustichelli F, Amler E (2017) Emulsion centrifugal spinning for production of 3D drug releasing nanofibres with core/shell structure. RSC Adv 7:1215–1228. https://doi.org/10.1039/C6RA26606A
  • He P, Zhong Q, Ge Y, Guo Z, Tian J, Zhou Y, ... & Zhou C (2018) Dual drug loaded co-axial electrospun PLGA/PVP fiber for guided tissue regeneration under control of infection. Mater Sci Eng C 90:549-556. https://doi.org/10.1016/j.msec.2018.04.014
  • Balusamy B, Senthamizhan A, Uyar T (2017) In vivo safety evaluations of electrospun nanofibers for biomedical applications. In: Uyar T, Kny E (ed) In Electrospun Materials for Tissue Engineering and Biomedical Applications 1st edn, Woodhead Publishing, Sawston, ss 101-113.
  • Wijeyaratne SM, Kannangara L (2011) Safety and efficacy of electrospun polycarbonate-urethane vascular graft for early hemodialysis access: first clinical results in man. J Vasc Access 12(1):28-35. https://doi.org/10.5301/jva.2011.6278.
  • Kossovich LY, Salkovskiy Y, Kirillova IV (2010) Electrospun chitosan nanofiber materials as burn dressing. In 6th World Congress of Biomechanics (WCB 2010). August 1-6, 2010 Singapore: In Conjunction with 14th International Conference on Biomedical Engineering (ICBME) and 5th Asia Pacific Conference on Biomechanics (APBiomech) ss. 1212-1214 Springer Berlin Heidelberg.
  • URL-2 https://www.clinicaltrials.gov/ Erişim 26 Kasım 2023
  • Abdul Hameed MM, Mohamed Khan SAP, Thamer BM, Al-Enizi A, Aldalbahi A, El-Hamshary H, El-Newehy MH (2020) Core-shell nanofibers from poly (vinyl alcohol) based biopolymers using emulsion electrospinning as drug delivery system for cephalexin drug. J Macromol Sci Part A 58(2):130-144. https://doi.org/10.1080/10601325.2020.1832517
Toplam 120 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Polimer Teknolojisi
Bölüm Derlemeler
Yazarlar

Fatma Nur Parın 0000-0003-2048-2951

Yayımlanma Tarihi 31 Temmuz 2024
Gönderilme Tarihi 10 Ocak 2024
Kabul Tarihi 3 Mayıs 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 4 Sayı: 2

Kaynak Göster

APA Parın, F. N. (2024). Mini-review of the bi-component nanofibrous scaffolds and drug delivery applications. Journal of Innovative Engineering and Natural Science, 4(2), 391-413. https://doi.org/10.61112/jiens.1417524


by.png
Journal of Innovative Engineering and Natural Science by İdris Karagöz is licensed under CC BY 4.0