Araştırma Makalesi
BibTex RIS Kaynak Göster

Farklı tip güneş panelleri, batarya ve şebekeden oluşan enerji sistemiyle sınıf aydınlatması ve verimliliğin artırılması

Yıl 2025, Cilt: 5 Sayı: 1, 206 - 224

Öz

Çalışmada üç hedef amaçlanmıştır. İlk amaç; Afyon Kocatepe Üniversitesi Dazkırı Meslek Yüksekokulu'nda bir sınıfın aydınlatılmasında en az enerji tüketimini sağlamak. Bunun için ortam aydınlatmasından mümkün olduğunca faydalanmak amacıyla algoritma tasarımı ve uygulaması gerçekleştirilmiştir. İkinci amaç; Monokristal, Polikristal, İnce film güneş panellerinin çalışmanın gerçekleştirildiği yerdeki enerji üretimlerinin karşılaştırılmasıdır. En uygun güneş paneli tipinin tespitinin gerçekleştirilmesidir. Son amaç; Monokristal, Polikristal, İnce film güneş panelleri, batarya ve şebekeden oluşan enerji üretim sisteminde, enerji akış kontrolü sağlanarak üretilen enerjinin en iyi şekilde kullanılması sağlanmıştır. Enerji akışının kontrolü için farklı algoritmalar kullanılmıştır. Algoritmaların uygulanması için bir kontrol kartı tasarlanmıştır. Tasarlanan kontrol kartı ile üç farklı PV modülün her birinin ürettiği akım, gerilim ve güç ölçülmüştür. Ayrıca aydınlatma sisteminin kullandığı akım, voltaj ve güç de ölçülmüştür. Kontrol kartı üzerinde bilgisayarla USB bağlantısı sağlamak için PIC18F4550 mikrodenetleyici kullanıldı. Böylece sistemdeki tüm veriler USB portu üzerinden bilgisayara gönderilmektedir. Bu verileri değerlendirip anlık olarak izleyebilmek için C# ile bir arayüz tasarlanmıştır. Tasarlanan arayüz ile tüm veriler anlık olarak görüntülenmekte ve 10 saniye aralıklarla Access veri tabanına kaydedilmektedir. Tasarlanan arayüz ile sistem manuel olarak kontrol edilebilmektedir. Veri tabanındaki kayıtlar incelendiğinde aydınlatma algoritması ve enerji akış kontrol algoritmaları ile %83 oranında enerji tasarrufu sağlanmıştır. Yapılan çalışma ile sınıf içi optimal bir şekilde aydınlatma yapılmıştır. Bu sayede görsel baş ağrısı başta olmak üzere eğitimi engelleyecek birçok etkinin önüne geçilmiştir. Görsel konforun artmasıyla eğitimin etkisi arttırılmıştır.

Kaynakça

  • Kartik S, Vennila I (2020) Energy Management Strategy Using ANFIS Approach for Hybrid Power System. Tehnički vjesnik 27:567-575. https://doi.org/10.17559/TV-20190722152008
  • İner G, Çağlarer E (2018) Two countries at same parellel in solar energyproductions: USA and Turkey. International Advanced Researches and Engineering Journal 02(03):325-329.
  • Yüksel AN, Türkboyları EY (2018) Use of solar panels in greenhouse soil disinfection, International Advanced Researches and Engineering Journal 02(02):195-199, 201.
  • Park Y, Choi S (2017) A novel simulation model for PV panels-based parameter tuning. Solar Energy 145:90-98. https://doi.org/10.1016/j.solener.2016.12.003
  • Sadeghi S (2018) Study using the flow battery in combination with solar panels and solid oxide fuel cell for power generation. Solar Energy 170:732-740. https://doi.org/10.1016/j.solener.2018.05.091
  • Ferrari S, Massimo L, Piuri V, Salma A, Cristaldi L, Faifer M, Toscani S (2018) Solar panel modelling through computational intelligence techniques. Measurement 93:572-580. https://doi.org/10.1016/j.measurement.2016.07.032
  • Demenkova TA, Korzhova OA, Phinenko AA (2017) Modelling of algorithms for solar panels control system. Pocedia Computer Science 103:589-596. https://doi.org/10.1016/j.procs.2017.01.07
  • Munaga P, Chinguwa S, Nyemba W (2020) Design for manufacture and assembly of an intelligent single axis solar system. Procedia 91:571-576. https://doi.org/10.1016/j.procir.2020.03.109
  • Zhong Q, Tong D (2020) Spatial layout optimization for solar photovoltaic (PV) panel installation. Renewable Energy 150:1-8. https://doi.org/10.1016/j.renene.2019.12.099
  • Awasthi A, Shukla A, Manohor M, Dondoriye C, Shukla K, Porwal D, Richhariya G (2020) Review on sun tracking technology in solar PV system. Energy Report 6:392-405. https://doi.org/10.1016/j.egyr.2020.02.004
  • Gardshov R, Eminov M, Kara G, Kara E, Mammadov T, Huseynova T (2020) The optimum daily direction of solar panels in the highlands, derived by an analytical method. Renewable and Sustainable Energy Reviews 120:1-11. https://doi.org/10.1016/j.rser.2019.109668
  • Tirmikci CA, Yavuz C (2018) Establishing new regression equations for obtaining the diffuse solar radiation in Sakarya (Turkey). Tehnicki Vjesnik-Technical Gazette 25:503-510. https://doi.org/10.17559/TV-20170202131249
  • Aziz S, Hassan S (2017) On improving the efficiency of a solar panel tracking system. Procedia Manufacturing 7:218-224. https://doi.org/10.1016/j.promfg.2016.12.053
  • Stanislaw C, Seweryn S, Adam T, Agata S (2019) Effect of Solar Radiation on Current-Carrying Capacity of PVC-insulated Power Cables – the Numerical Point of View. Tehnički Vjesnik 26(6):1821-1826. https://doi.org/10.17559/TV-20181029214825
  • Alomar OR, Ali OM, Ali BM, Qader VS, Ali OM (2023) Energy, exergy, economical and environmental analysis of photovoltaic solar panel for fixed, single and dual axis tracking systems: An experimental and theoretical study. Case Studies in Thermal Engineering 53:103635. https://doi.org/10.1016/j.csite.2023.103635
  • Huang X, He J, Hing Y, Cai Y, Wang W, Zhao F (2023) Numerical analysis of solar ventilated façade integrated thermoelectric energy harvesting panel for simultaneous building thermal insulation and power generation. Journal of Building Engineering 76:107304. https://doi.org/10.1016/j.jobe.2023.107304
  • Khan F, Karami NM, Khan O (2023) Exploring the scalability and commercial viability of biosynthesized nano particles for cooling panels with the help of Artificial Intelligence and solar energy systems. Green Technologies and Sustainability 1:100036. https://doi.org/10.1016/j.grets.2023.100036
  • Gaglia AG, Lykoudis S, Arfiriou AA, Balaras CA, Dailnas E (2017) Energy efficiency of PV panels under real outdoor condition – An experimental assessment in Athens, Greece. Renewable Energy 101:236-243. https://doi.org/10.1016/j.renene.2016.08.051
  • Guenounou A, Malek A, Aillerie M (2016) Comparative performance of PV panels of different technologies over one year of exposure: Application to a coastal Mediterranean region of Algeria. Energy Conversion and Management 114:356-363. https://doi.org/10.1016/j.enconman.2016.02.044
  • Hassan F (2016) Novel high accurate sensorless dual-axis solar tracking system controlled by maximum power point tracking unit of photovoltaic system. Applied Energy 173:448-459. https://doi.org/10.1016/j.apenergy.2016.03.109
  • Fiances I, Ceron E, Paredes R, Nofuente G, Casa J (2019) Analysis of the Performance of Various PV Module Technologies in Peru. Energies 12:1-19. https://doi.org/10.3390/en12010186
  • Zhu Y, Lui J, Yang X (2021) Design and performance analysis of a solar tracking system with a novel single-axis tracking structure to maximize energy collection. Applied Energy 264:1-7. https://doi.org/10.1016/j.apenergy.2020.114647
  • Elibol E, Özmen ÖT, Tutkun N, Köysal O (2017) Outdoor performance analysis of different PV panels types. Renewable and Sustainable Energy Reviews 67:651-661. https://doi.org/10.1016/j.rser.2016.09.051
  • Jamroen C, Komkum P, Koshri S, Himananto W, Panupintu S, Unkat S (2021) A low-cost dual-axis solar tracking system based on digital logic design: Design and implementation. Sustainable Energy Technologies and Assessments 37:100618-100632. https://doi.org/10.1016/j.seta.2019.100618
  • Awasthi A, Shukla A, Manohor M, Dondoriye C, Shukla K, Porwal D, Richhariya G (2022) Review on sun tracking technology in solar PV system. Energy Reports 6:392-405. https://doi.org/10.1016/j.egyr.2020.02.004
  • Katepelli A, Wang Y, Shii D (2023) Solar harvesting through multiple semi-transparent cadmium telluride solar panels for collective energy generation. Solar Energy 264:112047. https://doi.org/10.1016/j.solener.2023.112047
  • Majewski P, Dias PR (2023) Product steward ship scheme for solar photovoltaic panels. Current Opinion in Green and Sustainable Chemistry 44:100859. https://doi.org/10.1016/j.cogsc.2023.100859
  • Terashima K, Sato H, Ikaga T (2023) PV/T solar panel for supplying residential demands of heating/cooling and hot water with a lower environmental thermal load. Energy & Buildings 297:13408. https://doi.org/10.1016/j.enbuild.2023.113408
  • Erdoğan İ, Bilen K, Kıvrak S (2022) Experimental investigation of the efficiency of solar panel over which water film flows. Journal of Polytechnic 26:1-9. https://doi.org/10.2339/politeknik.1163785
  • Duman S, Alçı M (2022) Investigation of the parameters affecting the total efficiency of solar energy panels designed with half and full photovoltaic cells. Niğde Ömer Halisdemir University Journal of Engineering Sciences 11:593-600. https://doi.org/10.28948/ngumuh.1073976
  • Kerem A, Atik M, Bayram A (2020) Experimental Investigation of The Effect of Surface Cooling on Photovoltaic (PV) Panel System for Electricity Production. International Journal of Engineering Research and Development 22:565- 578. https://doi.org/10.29137/umagd.659347
  • Winterbottom M, Wilkins A (2009) Lighting and discomfort in the classroom. Journal of Environmental Psychology 29:63-75. https://doi.org/10.1016/j.jenvp.2008.11.007
  • Yulianti I (2022) Quality of Lighting in Regular and Fullday Class Tsanawiyah Miftuhul Huda Tayu Pati. Physics Communication 6(1):25-29.
  • Ricciardi P, Buratti C (2018) Environmental quality of university classrooms: Subjective and objective evaluation of the thermal, acoustic, and lighting comfort conditions. Building and Environment 12:23–36. https://doi.org/10.1016/j.buildenv.2017.10.030
  • Dang R, Liu Y, Chang S (2023) The impact patterns of classroom lighting parameters on visual fatigue and a mathematical model. Building and Environment 234:110193. https://doi.org/10.1016/j.buildenv.2023.110193
  • Samiou R, Doulos S, Zerefos S (2022) Daylighting and artificial lighting criteria that promote performance and optical comfort in preschool classrooms. Energy & Buildings 258:111819. https://doi.org/10.1016/j.enbuild.2021.111819
  • Gentile N (2022) Improving lighting energy efficiency through user response. Energy & Buildings 263: 112022. https://doi.org/10.1016/j.enbuild.2022.112022
  • Nuria C, Carmen L, Fabio B, Vicente B (2018) Emotional evaluation of lighting in university classrooms: A preliminary study. Frontiers of Architectural Research 7:600-609. https://doi.org/10.1016/j.foar.2018.07.002
  • Zhe K, Alstan J (2021) Instantaneous lighting quality within higher educational classrooms in Singapore. Frontiers of Architectural Research 7:787-802. https://doi.org/10.1016/j.foar.2021.05.001
  • Yang W, Joen JY (2023) Effects of lighting and sound factors on environmental sensation, perception, and cognitive performance in a classroom. Journal of Building Engineering 76:107063. https://doi.org/10.1016/j.jobe.2023.107063
  • Nuria C, Higuera-Trujillob J, Carmen L (2024) Virtual reality-based study assessing the impact of lighting on attention in university classrooms. Journal of Building Engineering 86:108902. https://doi.org/10.1016/j.jobe.2024.108902

Classroom lighting and increasing efficiency with an energy system consisting of different types of solar panels, batteries and the grid

Yıl 2025, Cilt: 5 Sayı: 1, 206 - 224

Öz

In the study, three objectives were achieved. The first purpose; To ensure minimum energy consumption in lighting a classroom at Afyon Kocatepe University Dazkırı Vocational School. The illumination levels of ten different points in the classroom and the outside environment were measured. The most ideal illumination level for learning in the classroom was set. For this purpose, algorithm design and implementation were carried out in order to benefit from ambient lighting as much as possible. Second purpose; It is a comparison of the energy production of Monocrystalline, Polycrystalline and Thin film solar panels at the location where the work is carried out. It is to determine the most suitable solar panel type. The final purpose: In the energy production system consisting of Monocrystalline, Polycrystalline, Thin-film solar panels, battery and grid, the best use of the produced energy is ensured by providing energy flow control. Different algorithms have been used to control the energy flow. A control card was designed to implement algorithms. With the designed control card, the current, voltage, and power produced by each of three different PV modules were measured. In addition, the current, voltage, and power used by the lighting system were also measured. PIC18F4550 microcontroller was used to provide USB connection to the computer on the control card. Thus, all data in the system is sent to the computer via a USB port. An interface was designed with C# to evaluate and instantly monitor this data. With the designed interface, all data is displayed instantly and saved to the Access database at 10-second intervals. The system can be controlled manually with the designed interface. When the records in the database were examined, 83% of energy savings were achieved with the lighting algorithm and energy flow control algorithms. With the work done, optimal lighting was provided in the classroom. In this way, many effects that would hinder education, especially visual headaches, are prevented. The effect of training is increased by increasing visual comfort.

Kaynakça

  • Kartik S, Vennila I (2020) Energy Management Strategy Using ANFIS Approach for Hybrid Power System. Tehnički vjesnik 27:567-575. https://doi.org/10.17559/TV-20190722152008
  • İner G, Çağlarer E (2018) Two countries at same parellel in solar energyproductions: USA and Turkey. International Advanced Researches and Engineering Journal 02(03):325-329.
  • Yüksel AN, Türkboyları EY (2018) Use of solar panels in greenhouse soil disinfection, International Advanced Researches and Engineering Journal 02(02):195-199, 201.
  • Park Y, Choi S (2017) A novel simulation model for PV panels-based parameter tuning. Solar Energy 145:90-98. https://doi.org/10.1016/j.solener.2016.12.003
  • Sadeghi S (2018) Study using the flow battery in combination with solar panels and solid oxide fuel cell for power generation. Solar Energy 170:732-740. https://doi.org/10.1016/j.solener.2018.05.091
  • Ferrari S, Massimo L, Piuri V, Salma A, Cristaldi L, Faifer M, Toscani S (2018) Solar panel modelling through computational intelligence techniques. Measurement 93:572-580. https://doi.org/10.1016/j.measurement.2016.07.032
  • Demenkova TA, Korzhova OA, Phinenko AA (2017) Modelling of algorithms for solar panels control system. Pocedia Computer Science 103:589-596. https://doi.org/10.1016/j.procs.2017.01.07
  • Munaga P, Chinguwa S, Nyemba W (2020) Design for manufacture and assembly of an intelligent single axis solar system. Procedia 91:571-576. https://doi.org/10.1016/j.procir.2020.03.109
  • Zhong Q, Tong D (2020) Spatial layout optimization for solar photovoltaic (PV) panel installation. Renewable Energy 150:1-8. https://doi.org/10.1016/j.renene.2019.12.099
  • Awasthi A, Shukla A, Manohor M, Dondoriye C, Shukla K, Porwal D, Richhariya G (2020) Review on sun tracking technology in solar PV system. Energy Report 6:392-405. https://doi.org/10.1016/j.egyr.2020.02.004
  • Gardshov R, Eminov M, Kara G, Kara E, Mammadov T, Huseynova T (2020) The optimum daily direction of solar panels in the highlands, derived by an analytical method. Renewable and Sustainable Energy Reviews 120:1-11. https://doi.org/10.1016/j.rser.2019.109668
  • Tirmikci CA, Yavuz C (2018) Establishing new regression equations for obtaining the diffuse solar radiation in Sakarya (Turkey). Tehnicki Vjesnik-Technical Gazette 25:503-510. https://doi.org/10.17559/TV-20170202131249
  • Aziz S, Hassan S (2017) On improving the efficiency of a solar panel tracking system. Procedia Manufacturing 7:218-224. https://doi.org/10.1016/j.promfg.2016.12.053
  • Stanislaw C, Seweryn S, Adam T, Agata S (2019) Effect of Solar Radiation on Current-Carrying Capacity of PVC-insulated Power Cables – the Numerical Point of View. Tehnički Vjesnik 26(6):1821-1826. https://doi.org/10.17559/TV-20181029214825
  • Alomar OR, Ali OM, Ali BM, Qader VS, Ali OM (2023) Energy, exergy, economical and environmental analysis of photovoltaic solar panel for fixed, single and dual axis tracking systems: An experimental and theoretical study. Case Studies in Thermal Engineering 53:103635. https://doi.org/10.1016/j.csite.2023.103635
  • Huang X, He J, Hing Y, Cai Y, Wang W, Zhao F (2023) Numerical analysis of solar ventilated façade integrated thermoelectric energy harvesting panel for simultaneous building thermal insulation and power generation. Journal of Building Engineering 76:107304. https://doi.org/10.1016/j.jobe.2023.107304
  • Khan F, Karami NM, Khan O (2023) Exploring the scalability and commercial viability of biosynthesized nano particles for cooling panels with the help of Artificial Intelligence and solar energy systems. Green Technologies and Sustainability 1:100036. https://doi.org/10.1016/j.grets.2023.100036
  • Gaglia AG, Lykoudis S, Arfiriou AA, Balaras CA, Dailnas E (2017) Energy efficiency of PV panels under real outdoor condition – An experimental assessment in Athens, Greece. Renewable Energy 101:236-243. https://doi.org/10.1016/j.renene.2016.08.051
  • Guenounou A, Malek A, Aillerie M (2016) Comparative performance of PV panels of different technologies over one year of exposure: Application to a coastal Mediterranean region of Algeria. Energy Conversion and Management 114:356-363. https://doi.org/10.1016/j.enconman.2016.02.044
  • Hassan F (2016) Novel high accurate sensorless dual-axis solar tracking system controlled by maximum power point tracking unit of photovoltaic system. Applied Energy 173:448-459. https://doi.org/10.1016/j.apenergy.2016.03.109
  • Fiances I, Ceron E, Paredes R, Nofuente G, Casa J (2019) Analysis of the Performance of Various PV Module Technologies in Peru. Energies 12:1-19. https://doi.org/10.3390/en12010186
  • Zhu Y, Lui J, Yang X (2021) Design and performance analysis of a solar tracking system with a novel single-axis tracking structure to maximize energy collection. Applied Energy 264:1-7. https://doi.org/10.1016/j.apenergy.2020.114647
  • Elibol E, Özmen ÖT, Tutkun N, Köysal O (2017) Outdoor performance analysis of different PV panels types. Renewable and Sustainable Energy Reviews 67:651-661. https://doi.org/10.1016/j.rser.2016.09.051
  • Jamroen C, Komkum P, Koshri S, Himananto W, Panupintu S, Unkat S (2021) A low-cost dual-axis solar tracking system based on digital logic design: Design and implementation. Sustainable Energy Technologies and Assessments 37:100618-100632. https://doi.org/10.1016/j.seta.2019.100618
  • Awasthi A, Shukla A, Manohor M, Dondoriye C, Shukla K, Porwal D, Richhariya G (2022) Review on sun tracking technology in solar PV system. Energy Reports 6:392-405. https://doi.org/10.1016/j.egyr.2020.02.004
  • Katepelli A, Wang Y, Shii D (2023) Solar harvesting through multiple semi-transparent cadmium telluride solar panels for collective energy generation. Solar Energy 264:112047. https://doi.org/10.1016/j.solener.2023.112047
  • Majewski P, Dias PR (2023) Product steward ship scheme for solar photovoltaic panels. Current Opinion in Green and Sustainable Chemistry 44:100859. https://doi.org/10.1016/j.cogsc.2023.100859
  • Terashima K, Sato H, Ikaga T (2023) PV/T solar panel for supplying residential demands of heating/cooling and hot water with a lower environmental thermal load. Energy & Buildings 297:13408. https://doi.org/10.1016/j.enbuild.2023.113408
  • Erdoğan İ, Bilen K, Kıvrak S (2022) Experimental investigation of the efficiency of solar panel over which water film flows. Journal of Polytechnic 26:1-9. https://doi.org/10.2339/politeknik.1163785
  • Duman S, Alçı M (2022) Investigation of the parameters affecting the total efficiency of solar energy panels designed with half and full photovoltaic cells. Niğde Ömer Halisdemir University Journal of Engineering Sciences 11:593-600. https://doi.org/10.28948/ngumuh.1073976
  • Kerem A, Atik M, Bayram A (2020) Experimental Investigation of The Effect of Surface Cooling on Photovoltaic (PV) Panel System for Electricity Production. International Journal of Engineering Research and Development 22:565- 578. https://doi.org/10.29137/umagd.659347
  • Winterbottom M, Wilkins A (2009) Lighting and discomfort in the classroom. Journal of Environmental Psychology 29:63-75. https://doi.org/10.1016/j.jenvp.2008.11.007
  • Yulianti I (2022) Quality of Lighting in Regular and Fullday Class Tsanawiyah Miftuhul Huda Tayu Pati. Physics Communication 6(1):25-29.
  • Ricciardi P, Buratti C (2018) Environmental quality of university classrooms: Subjective and objective evaluation of the thermal, acoustic, and lighting comfort conditions. Building and Environment 12:23–36. https://doi.org/10.1016/j.buildenv.2017.10.030
  • Dang R, Liu Y, Chang S (2023) The impact patterns of classroom lighting parameters on visual fatigue and a mathematical model. Building and Environment 234:110193. https://doi.org/10.1016/j.buildenv.2023.110193
  • Samiou R, Doulos S, Zerefos S (2022) Daylighting and artificial lighting criteria that promote performance and optical comfort in preschool classrooms. Energy & Buildings 258:111819. https://doi.org/10.1016/j.enbuild.2021.111819
  • Gentile N (2022) Improving lighting energy efficiency through user response. Energy & Buildings 263: 112022. https://doi.org/10.1016/j.enbuild.2022.112022
  • Nuria C, Carmen L, Fabio B, Vicente B (2018) Emotional evaluation of lighting in university classrooms: A preliminary study. Frontiers of Architectural Research 7:600-609. https://doi.org/10.1016/j.foar.2018.07.002
  • Zhe K, Alstan J (2021) Instantaneous lighting quality within higher educational classrooms in Singapore. Frontiers of Architectural Research 7:787-802. https://doi.org/10.1016/j.foar.2021.05.001
  • Yang W, Joen JY (2023) Effects of lighting and sound factors on environmental sensation, perception, and cognitive performance in a classroom. Journal of Building Engineering 76:107063. https://doi.org/10.1016/j.jobe.2023.107063
  • Nuria C, Higuera-Trujillob J, Carmen L (2024) Virtual reality-based study assessing the impact of lighting on attention in university classrooms. Journal of Building Engineering 86:108902. https://doi.org/10.1016/j.jobe.2024.108902
Toplam 41 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Aydınlatma
Bölüm Araştırma Makaleleri
Yazarlar

Abdil Karakan 0000-0003-1651-7568

Selami Kesler 0000-0002-7027-1426

Yüksel Oğuz 0000-0002-5233-151X

Yayımlanma Tarihi
Gönderilme Tarihi 27 Ağustos 2024
Kabul Tarihi 10 Kasım 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 5 Sayı: 1

Kaynak Göster

APA Karakan, A., Kesler, S., & Oğuz, Y. (t.y.). Classroom lighting and increasing efficiency with an energy system consisting of different types of solar panels, batteries and the grid. Journal of Innovative Engineering and Natural Science, 5(1), 206-224.


by.png
Journal of Innovative Engineering and Natural Science by İdris Karagöz is licensed under CC BY 4.0