Araştırma Makalesi
BibTex RIS Kaynak Göster

Temefos’a Maruz Kalan Gökkuşağı Alabalıklarında, Antioksidan Cevaplar

Yıl 2019, Cilt: 9 Sayı: 2, 1156 - 1163, 01.06.2019
https://doi.org/10.21597/jist.446624

Öz

Çalışmamızda gökkuşağı alabalıkları temefosun 3 ve 6 mg L-1 dozlarına akut uygulama ile maruz bırakılmıştır. Uygulama sonrasında karaciğer dokusunda antioksidan enzim aktiviteleri (Süperoksitdismutaz (SOD), katalaz (CAT), glutatyon redüktaz (GR), glukoz 6 fosfat dehidrogenaz (G6PD)), malondialdehit seviyesi ve beyin dokusunda asetilkolin esteraz (AChE) aktivitesi değerlendirildi. Karaciğer dokusunda SOD, CAT, GR, G6PD aktivitelerinde ve MDA seviyesinde önemli seviyede değişiklikler belirlendi (P<0.05). Kontrol grubu ile kıyaslandığı zaman tüm doz uygulanan gruplarda AChE aktivitesinin inhibe olduğu tespit edildi (P<0.05). Sonuçlar, temefosun karaciğer dokusunda enzim aktivitelerini inhibe ettiğini ve MDA seviyesini arttırdığını göstermiştir. Bu veriler ışığında sucul ortamlarda temefos toksisitesinin dikkate alınması gerektiğini söyleyebiliriz.

Kaynakça

  • Alberti E, Ardizzoia G, Brenna S, Castelli F, Galli S, Maspero A, 2007. The synthesis of a new dithiophosphonic acid and its coordination properties toward Ni (II): A combined NMR and X-ray diffraction study. Polyhedron, 26(5): 958-966.
  • Allen FH, Kennard O, Watson DG, Brammer L, Orpen AG, Taylor R, 1987. Tables of bond lengths determined by X-ray and neutron diffraction. Part 1. Bond lengths in organic compounds. Journal of the Chemical Society, Perkin Transactions 2, (12): S1-S19.
  • Aragoni MC, Arca M, Demartin F, Devillanova FA, Graiff C, Isaia F, Lippolis V, Tiripicchio A, Verani G, 2000. Ring‐Opening of Lawesson’s Reagent: New Syntheses of Phosphono‐and Amidophosphono‐Dithioato Complexes− Structural and CP‐MAS 31P‐NMR Characterization of [p‐CH3OPh (X) PS2] 2M (X= MeO, iPrNH; M= NiII, PdII, and PtII). European Journal of Inorganic Chemistry, 2000(10): 2239-2244.
  • Aragoni MC, Arca M, Demartin F, Devillanova FA, Graiff C, Isaia F, Lippolis V, Tiripicchio A, Verani G, 2001. Reactivity of phosphonodithioato Ni II complexes: solution equilibria, solid state studies and theoretical calculations on the adduct formation with some pyridine derivatives. Journal of the Chemical Society, Dalton Transactions, (18): 2671-2677.
  • ASIF M, 2018. REVIEW ON TO FREE RADICALS, ANTIOXIDANTS AND BRIEF OVERVIEW OF OXIMES. International Journal of Current Research in Applied Chemistry & Chemical Engineering [ISSN: 2581-5385 (online)], 2(1).
  • Aydemir C, Solak S, Acar Doganlı G, Sensoy T, Arar D, Bozbeyoglu N, Mercan Dogan N, Lönnecke P, Hey-Hawkins E, Sekerci M, 2015. Synthesis, Characterization, and Antibacterial Activity of Dithiophosphonates and Amidodithiophosphonates. Phosphorus, Sulfur, and Silicon and the Related Elements, 190(3): 300-309.
  • Bayrakdar A, Kart H, Elcin S, Deligoz H, Karabacak M, 2015. Synthesis and DFT calculation of a novel 5, 17-di (2-antracenylazo)-25, 27-di (ethoxycarbonylmethoxy)-26, 28-dihydroxycalix [4] arene. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 136: 607-617.
  • Bellamy LJ. 1964. The infra-red spectra of complex molecules.
  • Chermette H, 1998. Density functional theory: a powerful tool for theoretical studies in coordination chemistry. Coordination chemistry reviews, 178: 699-721.
  • Chidangil S, Shukla MK, Mishra PC, 1998. A molecular electrostatic potential mapping study of some fluoroquinolone anti-bacterial agents. Molecular modeling annual, 4(8): 250-258.
  • Corminboeuf C, Tran F, Weber J, 2006. The role of density functional theory in chemistry: Some historical landmarks and applications to zeolites. Journal of Molecular Structure: THEOCHEM, 762(1): 1-7.
  • Foresman J,Frish E, 1996. Exploring chemistry. Gaussian Inc., Pittsburg, USA.
  • Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Mennucci B, Petersson G, 2009. Gaussian 09, rev. D. 01. Gaussian Inc., Wallingford CT.
  • Gataulina AR, Safin DA, Gimadiev TR, Pinus MV, 2008. Complexes of podand-containing bis (dithiophosphonate) ligands with cobalt (II), nickel (II) and cadmium (II): recognition of CH2Cl2. Transition Metal Chemistry, 33(7): 921.
  • Gray IP, Milton HL, Slawin AM, Woollins JD, 2003. Synthesis and structure of [Fc (RO) PS 2]− complexes. Dalton Transactions, (17): 3450-3457.
  • Gray IP, Slawin AM, Woollins JD, 2004. Synthesis and structure of [An (RO) PS 2]− complexes. Dalton Transactions, (16): 2477-2486.
  • Karabacak M, Asiri A, Al-Youbi A, Qusti A, Cinar M, 2014. Identification of structural and spectral features of synthesized cyano-stilbene dye derivatives: A comparative experimental and DFT study. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 120: 144-150.
  • Karabacak M, Çoruh A, Kurt M, 2008. FT-IR, FT-Raman, NMR spectra, and molecular structure investigation of 2, 3-dibromo-N-methylmaleimide: A combined experimental and theoretical study. Journal of Molecular Structure, 892(1): 125-131.
  • Karakus M, 2011. Synthesis and Characterization of Chiral Gold (I) Phosphine Complexes with New Dithiophosphorus Ligands. Phosphorus, Sulfur, and Silicon and the Related Elements, 186(7): 1523-1530.
  • Karakus M, Kara I, Çelik Ö, Orujalipoor I, İde S, Yilmaz H, 2018. Synthesis, characterization, single crystal structure and theoretical studies of trans-Ni (II)-complex with dithiophosphonate ligand. Journal of Molecular Structure, 1163: 128-136.
  • Karakus M, Lönnecke P, Hey-Hawkins E, 2004. Zwitterionic ferrocenyldithiophosphonates: the molecular structure of [FcP (S) S (OCH 2 CH 2 NH 2 Me)][Fc= Fe (η 5-C 5 H 4)(η 5-C 5 H 5)]. Polyhedron, 23(14): 2281-2284.
  • Karakus M, Lönnecke P, Hildebrand M, Hey‐Hawkins E, 2011. Chiral Heterobimetallic Gold (I) Ferrocenyldithiophosphonato Complexes. Zeitschrift für anorganische und allgemeine Chemie, 637(7‐8): 983-987.
  • Karakus M, Solak S, Hökelek T, Dal H, Bayrakdar A, Kart SÖ, Karabacak M, Kart H, 2014. Synthesis, crystal structure and ab initio/DFT calculations of a derivative of dithiophosphonates. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 122: 582-590.
  • Kosar B,Albayrak C, 2011. Spectroscopic investigations and quantum chemical computational study of (E)-4-methoxy-2-[(p-tolylimino) methyl] phenol. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 78(1): 160-167.
  • Koşar B, Albayrak Ç, Odabaşoğlu M, Büyükgüngör O, 2010. (E)-3-[(3-(Trifluoromethyl) phenylimino) methyl] benzene-1, 2-diol: X-ray and DFT calculated structures. Turkish Journal of Chemistry, 34(3): 481-487.
  • Liu S-L, Wang X-Y, Duan T, Leung W-H, Zhang Q-F, 2010. Hydrolysis and coordination behavior of ferrocenyl-phosphonodithiolate: Synthesis and structure of Cu 4 [FcP (OCH 3)(μ-S)(μ 3-S)] 4 [Fc= Fe (η 5-C 5 H 4)(η 5-C 5 H 5)]. Journal of molecular structure, 964(1): 78-81.
  • Maspero A, Kani I, Mohamed AA, Omary MA, Staples RJ, Fackler JP, 2003. Syntheses and structures of dinuclear gold (I) dithiophosphonate complexes and the reaction of the dithiophosphonate complexes with phosphines: Diverse coordination types. Inorganic chemistry, 42(17): 5311-5319.
  • Miertuš S, Scrocco E, Tomasi J, 1981. Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects. Chemical Physics, 55(1): 117-129.
  • Muthu S, Porchelvi EE, Karabacak M, Asiri A, Swathi SS, 2015. Synthesis, structure, spectroscopic studies (FT-IR, FT-Raman and UV), normal coordinate, NBO and NLO analysis of salicylaldehyde p-chlorophenylthiosemicarbazone. Journal of Molecular Structure, 1081: 400-412.
  • Nasiri SK, Reisi-Vanani A, Hamadanian M, 2018. Molecular Structure, Spectroscopic, Local and Global Reactivity Descriptors and NBO Analysis of C32H12: A New Buckybowl and Sub-Fullerene Structure. Polycyclic Aromatic Compounds: 1-12.
  • Okulik N,Jubert AH, 2005. Theoretical analysis of the reactive sites of non-steroidal anti-inflammatory drugs. Internet Electronic Journal of Molecular Design, 4(1): 17-30.
  • Reed AE,Weinhold F, 1985. Natural localized molecular orbitals. The Journal of chemical physics, 83(4): 1736-1740.
  • Solak S, 2011. Ditiyofosfor Bileşiklerinin Sentezi, Mono ve Dinükleer Altın(I) ve Gümüş(I) Kompleklerinin Araştırılması, Pamukkale Üniversitesi Yüksek Lisans Tezi(Basılmış).
  • Solak S, Karakuş M, Tercan B, Hökelek T, 2011. Triethylammonium (S)-(−)-O-[1-(2-naphthyl) ethyl](4-methoxyphenyl) dithiophosphonate. Acta Crystallographica Section E: Structure Reports Online, 67(5): o1260-o1261.
  • Sundaraganesan N, Anand B, Meganathan C, Joshua BD, 2008a. FT-IR, FT-Raman spectra and ab initio HF, DFT vibrational analysis of p-chlorobenzoic acid. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 69(3): 871-879.
  • Sundaraganesan N, Meganathan C, Joshua BD, Mani P, Jayaprakash A, 2008b. Molecular structure and vibrational spectra of 3-chloro-4-fluoro benzonitrile by ab initio HF and density functional method. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 71(3): 1134-1139.
  • Şener N, Bayrakdar A, Kart HH, Şener İ, 2017. A combined experimental and DFT investigation of disazo dye having pyrazole skeleton. Journal of Molecular Structure, 1129: 222-230.
  • Taslı P, Bayrakdar A, Karakus O, Kart H, Koc Y, 2015. Synthesis and characterization of three novel Schiff base compounds: Experimental and theoretical study. Optics and Spectroscopy, 119(3): 467-484.
  • Thomas CM, Neels A, Stœckli-Evans H, Süss-Fink G, 2001. Synthesis and structure of [(C 5 H 5) Fe (C 5 H 4 PS 2 OCH 2 C 6 H 4 N 3)]−, a new phosphonodithioate derivative, and its coordination chemistry with rhodium (I) and nickel (II). Journal of Organometallic Chemistry, 633(1): 85-90.
  • van Zyl WE, López-de-Luzuriaga JM, Mohamed AA, Staples RJ, Fackler JP, 2002. Dinuclear Gold (I) Dithiophosphonate Complexes: Synthesis, Luminescent Properties, and X-ray Crystal Structures of [AuS2PR (OR ‘)] 2 (R= Ph, R ‘= C5H9; R= 4-C6H4OMe, R ‘=(1 S, 5 R, 2 S)-(−)-Menthyl; R= Fc, R ‘=(CH2) 2O (CH2) 2OMe). Inorganic chemistry, 41(17): 4579-4589.
  • Zhang R, Du B, Sun G, Sun Y, 2010. Experimental and theoretical studies on o-, m-and p-chlorobenzylideneaminoantipyrines. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 75(3): 1115-1124.

Responses of Antioxidant in Rainbow Trout Exposed to Temephos

Yıl 2019, Cilt: 9 Sayı: 2, 1156 - 1163, 01.06.2019
https://doi.org/10.21597/jist.446624

Öz

In this study, rainbow trout was exposed to temephos (TE) during 96h acute toxicity conditions. The toxic compound was given in doses of 3 mg L-1 and 6 mg L-1. Furthermore, we assessment antioxidant enzymes activity (glucose-6-phosphate dehydrogenase (G6PD), catalase (CAT), glutathione reductase (GR), superoxide dismutase (SOD), malondialdehyde (MDA) level in liver and acetylcholinesterase (AChE) in brain. CAT, SOD, GR, G6PD, and MDA in liver were demonstrated significant effects by the treatments (P<0.05). TE exposure resulted in the inhibition of AChE activity, which, compared with the control group, decreased in all doses (P<0.05). The results showed that temephos inhibited liver tissue’s enzyme activities and increased MDA levels. In the light of these data, we can say that temephos toxicity should be taken into consideration in aquatic environments.

Kaynakça

  • Alberti E, Ardizzoia G, Brenna S, Castelli F, Galli S, Maspero A, 2007. The synthesis of a new dithiophosphonic acid and its coordination properties toward Ni (II): A combined NMR and X-ray diffraction study. Polyhedron, 26(5): 958-966.
  • Allen FH, Kennard O, Watson DG, Brammer L, Orpen AG, Taylor R, 1987. Tables of bond lengths determined by X-ray and neutron diffraction. Part 1. Bond lengths in organic compounds. Journal of the Chemical Society, Perkin Transactions 2, (12): S1-S19.
  • Aragoni MC, Arca M, Demartin F, Devillanova FA, Graiff C, Isaia F, Lippolis V, Tiripicchio A, Verani G, 2000. Ring‐Opening of Lawesson’s Reagent: New Syntheses of Phosphono‐and Amidophosphono‐Dithioato Complexes− Structural and CP‐MAS 31P‐NMR Characterization of [p‐CH3OPh (X) PS2] 2M (X= MeO, iPrNH; M= NiII, PdII, and PtII). European Journal of Inorganic Chemistry, 2000(10): 2239-2244.
  • Aragoni MC, Arca M, Demartin F, Devillanova FA, Graiff C, Isaia F, Lippolis V, Tiripicchio A, Verani G, 2001. Reactivity of phosphonodithioato Ni II complexes: solution equilibria, solid state studies and theoretical calculations on the adduct formation with some pyridine derivatives. Journal of the Chemical Society, Dalton Transactions, (18): 2671-2677.
  • ASIF M, 2018. REVIEW ON TO FREE RADICALS, ANTIOXIDANTS AND BRIEF OVERVIEW OF OXIMES. International Journal of Current Research in Applied Chemistry & Chemical Engineering [ISSN: 2581-5385 (online)], 2(1).
  • Aydemir C, Solak S, Acar Doganlı G, Sensoy T, Arar D, Bozbeyoglu N, Mercan Dogan N, Lönnecke P, Hey-Hawkins E, Sekerci M, 2015. Synthesis, Characterization, and Antibacterial Activity of Dithiophosphonates and Amidodithiophosphonates. Phosphorus, Sulfur, and Silicon and the Related Elements, 190(3): 300-309.
  • Bayrakdar A, Kart H, Elcin S, Deligoz H, Karabacak M, 2015. Synthesis and DFT calculation of a novel 5, 17-di (2-antracenylazo)-25, 27-di (ethoxycarbonylmethoxy)-26, 28-dihydroxycalix [4] arene. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 136: 607-617.
  • Bellamy LJ. 1964. The infra-red spectra of complex molecules.
  • Chermette H, 1998. Density functional theory: a powerful tool for theoretical studies in coordination chemistry. Coordination chemistry reviews, 178: 699-721.
  • Chidangil S, Shukla MK, Mishra PC, 1998. A molecular electrostatic potential mapping study of some fluoroquinolone anti-bacterial agents. Molecular modeling annual, 4(8): 250-258.
  • Corminboeuf C, Tran F, Weber J, 2006. The role of density functional theory in chemistry: Some historical landmarks and applications to zeolites. Journal of Molecular Structure: THEOCHEM, 762(1): 1-7.
  • Foresman J,Frish E, 1996. Exploring chemistry. Gaussian Inc., Pittsburg, USA.
  • Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Mennucci B, Petersson G, 2009. Gaussian 09, rev. D. 01. Gaussian Inc., Wallingford CT.
  • Gataulina AR, Safin DA, Gimadiev TR, Pinus MV, 2008. Complexes of podand-containing bis (dithiophosphonate) ligands with cobalt (II), nickel (II) and cadmium (II): recognition of CH2Cl2. Transition Metal Chemistry, 33(7): 921.
  • Gray IP, Milton HL, Slawin AM, Woollins JD, 2003. Synthesis and structure of [Fc (RO) PS 2]− complexes. Dalton Transactions, (17): 3450-3457.
  • Gray IP, Slawin AM, Woollins JD, 2004. Synthesis and structure of [An (RO) PS 2]− complexes. Dalton Transactions, (16): 2477-2486.
  • Karabacak M, Asiri A, Al-Youbi A, Qusti A, Cinar M, 2014. Identification of structural and spectral features of synthesized cyano-stilbene dye derivatives: A comparative experimental and DFT study. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 120: 144-150.
  • Karabacak M, Çoruh A, Kurt M, 2008. FT-IR, FT-Raman, NMR spectra, and molecular structure investigation of 2, 3-dibromo-N-methylmaleimide: A combined experimental and theoretical study. Journal of Molecular Structure, 892(1): 125-131.
  • Karakus M, 2011. Synthesis and Characterization of Chiral Gold (I) Phosphine Complexes with New Dithiophosphorus Ligands. Phosphorus, Sulfur, and Silicon and the Related Elements, 186(7): 1523-1530.
  • Karakus M, Kara I, Çelik Ö, Orujalipoor I, İde S, Yilmaz H, 2018. Synthesis, characterization, single crystal structure and theoretical studies of trans-Ni (II)-complex with dithiophosphonate ligand. Journal of Molecular Structure, 1163: 128-136.
  • Karakus M, Lönnecke P, Hey-Hawkins E, 2004. Zwitterionic ferrocenyldithiophosphonates: the molecular structure of [FcP (S) S (OCH 2 CH 2 NH 2 Me)][Fc= Fe (η 5-C 5 H 4)(η 5-C 5 H 5)]. Polyhedron, 23(14): 2281-2284.
  • Karakus M, Lönnecke P, Hildebrand M, Hey‐Hawkins E, 2011. Chiral Heterobimetallic Gold (I) Ferrocenyldithiophosphonato Complexes. Zeitschrift für anorganische und allgemeine Chemie, 637(7‐8): 983-987.
  • Karakus M, Solak S, Hökelek T, Dal H, Bayrakdar A, Kart SÖ, Karabacak M, Kart H, 2014. Synthesis, crystal structure and ab initio/DFT calculations of a derivative of dithiophosphonates. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 122: 582-590.
  • Kosar B,Albayrak C, 2011. Spectroscopic investigations and quantum chemical computational study of (E)-4-methoxy-2-[(p-tolylimino) methyl] phenol. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 78(1): 160-167.
  • Koşar B, Albayrak Ç, Odabaşoğlu M, Büyükgüngör O, 2010. (E)-3-[(3-(Trifluoromethyl) phenylimino) methyl] benzene-1, 2-diol: X-ray and DFT calculated structures. Turkish Journal of Chemistry, 34(3): 481-487.
  • Liu S-L, Wang X-Y, Duan T, Leung W-H, Zhang Q-F, 2010. Hydrolysis and coordination behavior of ferrocenyl-phosphonodithiolate: Synthesis and structure of Cu 4 [FcP (OCH 3)(μ-S)(μ 3-S)] 4 [Fc= Fe (η 5-C 5 H 4)(η 5-C 5 H 5)]. Journal of molecular structure, 964(1): 78-81.
  • Maspero A, Kani I, Mohamed AA, Omary MA, Staples RJ, Fackler JP, 2003. Syntheses and structures of dinuclear gold (I) dithiophosphonate complexes and the reaction of the dithiophosphonate complexes with phosphines: Diverse coordination types. Inorganic chemistry, 42(17): 5311-5319.
  • Miertuš S, Scrocco E, Tomasi J, 1981. Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects. Chemical Physics, 55(1): 117-129.
  • Muthu S, Porchelvi EE, Karabacak M, Asiri A, Swathi SS, 2015. Synthesis, structure, spectroscopic studies (FT-IR, FT-Raman and UV), normal coordinate, NBO and NLO analysis of salicylaldehyde p-chlorophenylthiosemicarbazone. Journal of Molecular Structure, 1081: 400-412.
  • Nasiri SK, Reisi-Vanani A, Hamadanian M, 2018. Molecular Structure, Spectroscopic, Local and Global Reactivity Descriptors and NBO Analysis of C32H12: A New Buckybowl and Sub-Fullerene Structure. Polycyclic Aromatic Compounds: 1-12.
  • Okulik N,Jubert AH, 2005. Theoretical analysis of the reactive sites of non-steroidal anti-inflammatory drugs. Internet Electronic Journal of Molecular Design, 4(1): 17-30.
  • Reed AE,Weinhold F, 1985. Natural localized molecular orbitals. The Journal of chemical physics, 83(4): 1736-1740.
  • Solak S, 2011. Ditiyofosfor Bileşiklerinin Sentezi, Mono ve Dinükleer Altın(I) ve Gümüş(I) Kompleklerinin Araştırılması, Pamukkale Üniversitesi Yüksek Lisans Tezi(Basılmış).
  • Solak S, Karakuş M, Tercan B, Hökelek T, 2011. Triethylammonium (S)-(−)-O-[1-(2-naphthyl) ethyl](4-methoxyphenyl) dithiophosphonate. Acta Crystallographica Section E: Structure Reports Online, 67(5): o1260-o1261.
  • Sundaraganesan N, Anand B, Meganathan C, Joshua BD, 2008a. FT-IR, FT-Raman spectra and ab initio HF, DFT vibrational analysis of p-chlorobenzoic acid. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 69(3): 871-879.
  • Sundaraganesan N, Meganathan C, Joshua BD, Mani P, Jayaprakash A, 2008b. Molecular structure and vibrational spectra of 3-chloro-4-fluoro benzonitrile by ab initio HF and density functional method. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 71(3): 1134-1139.
  • Şener N, Bayrakdar A, Kart HH, Şener İ, 2017. A combined experimental and DFT investigation of disazo dye having pyrazole skeleton. Journal of Molecular Structure, 1129: 222-230.
  • Taslı P, Bayrakdar A, Karakus O, Kart H, Koc Y, 2015. Synthesis and characterization of three novel Schiff base compounds: Experimental and theoretical study. Optics and Spectroscopy, 119(3): 467-484.
  • Thomas CM, Neels A, Stœckli-Evans H, Süss-Fink G, 2001. Synthesis and structure of [(C 5 H 5) Fe (C 5 H 4 PS 2 OCH 2 C 6 H 4 N 3)]−, a new phosphonodithioate derivative, and its coordination chemistry with rhodium (I) and nickel (II). Journal of Organometallic Chemistry, 633(1): 85-90.
  • van Zyl WE, López-de-Luzuriaga JM, Mohamed AA, Staples RJ, Fackler JP, 2002. Dinuclear Gold (I) Dithiophosphonate Complexes: Synthesis, Luminescent Properties, and X-ray Crystal Structures of [AuS2PR (OR ‘)] 2 (R= Ph, R ‘= C5H9; R= 4-C6H4OMe, R ‘=(1 S, 5 R, 2 S)-(−)-Menthyl; R= Fc, R ‘=(CH2) 2O (CH2) 2OMe). Inorganic chemistry, 41(17): 4579-4589.
  • Zhang R, Du B, Sun G, Sun Y, 2010. Experimental and theoretical studies on o-, m-and p-chlorobenzylideneaminoantipyrines. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 75(3): 1115-1124.
Toplam 41 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Hidrobiyoloji
Bölüm Su Ürünleri / Fisheries
Yazarlar

Veysel Parlak 0000-0002-3459-7963

Arzu Uçar 0000-0001-5675-9401

Gonca Alak 0000-0002-7539-1152

Muhammed Atamanalp 0000-0002-2038-3921

Yayımlanma Tarihi 1 Haziran 2019
Gönderilme Tarihi 30 Temmuz 2018
Kabul Tarihi 19 Kasım 2018
Yayımlandığı Sayı Yıl 2019 Cilt: 9 Sayı: 2

Kaynak Göster

APA Parlak, V., Uçar, A., Alak, G., Atamanalp, M. (2019). Responses of Antioxidant in Rainbow Trout Exposed to Temephos. Journal of the Institute of Science and Technology, 9(2), 1156-1163. https://doi.org/10.21597/jist.446624
AMA Parlak V, Uçar A, Alak G, Atamanalp M. Responses of Antioxidant in Rainbow Trout Exposed to Temephos. Iğdır Üniv. Fen Bil Enst. Der. Haziran 2019;9(2):1156-1163. doi:10.21597/jist.446624
Chicago Parlak, Veysel, Arzu Uçar, Gonca Alak, ve Muhammed Atamanalp. “Responses of Antioxidant in Rainbow Trout Exposed to Temephos”. Journal of the Institute of Science and Technology 9, sy. 2 (Haziran 2019): 1156-63. https://doi.org/10.21597/jist.446624.
EndNote Parlak V, Uçar A, Alak G, Atamanalp M (01 Haziran 2019) Responses of Antioxidant in Rainbow Trout Exposed to Temephos. Journal of the Institute of Science and Technology 9 2 1156–1163.
IEEE V. Parlak, A. Uçar, G. Alak, ve M. Atamanalp, “Responses of Antioxidant in Rainbow Trout Exposed to Temephos”, Iğdır Üniv. Fen Bil Enst. Der., c. 9, sy. 2, ss. 1156–1163, 2019, doi: 10.21597/jist.446624.
ISNAD Parlak, Veysel vd. “Responses of Antioxidant in Rainbow Trout Exposed to Temephos”. Journal of the Institute of Science and Technology 9/2 (Haziran 2019), 1156-1163. https://doi.org/10.21597/jist.446624.
JAMA Parlak V, Uçar A, Alak G, Atamanalp M. Responses of Antioxidant in Rainbow Trout Exposed to Temephos. Iğdır Üniv. Fen Bil Enst. Der. 2019;9:1156–1163.
MLA Parlak, Veysel vd. “Responses of Antioxidant in Rainbow Trout Exposed to Temephos”. Journal of the Institute of Science and Technology, c. 9, sy. 2, 2019, ss. 1156-63, doi:10.21597/jist.446624.
Vancouver Parlak V, Uçar A, Alak G, Atamanalp M. Responses of Antioxidant in Rainbow Trout Exposed to Temephos. Iğdır Üniv. Fen Bil Enst. Der. 2019;9(2):1156-63.