Araştırma Makalesi
BibTex RIS Kaynak Göster

Kesirli Fitzhugh-Nagumo Denkleminin Yeni Tam Çözümleri

Yıl 2019, Cilt: 9 Sayı: 3, 1633 - 1645, 01.09.2019

Öz

Bu makaledeki ana amaç, reaksiyon difüzyon, sinir sinyallerinin yayılımında, devre teorisi, biyoloji ve popülasyon genetiği modeli olarak kullanılan zaman kesirli Fitzhugh-Nagumo denkleminin hareketli dalga, soliter dalga ve periyodik dalga çözümlerini elde etmektir. Bu amaç için yeni genişletilmiş direkt cebirsel yöntem kullanılmıştır. Kesirli türev ifadesi uygulanabilir, iyi tanımlı ve anlaşılabilir bir tanım olan conformable türündendir.

Kaynakça

  • Abbasbandy, S., 2008. Soliton solutions for the Fitzhugh–Nagumo equation with the homotopy analysis method. Applied Mathematical Modelling, 32(12), 2706-2714.
  • Abdeljawad T, 2015. On conformable fractional calculus. Journal of computational and Applied Mathematics, 279:57-66.
  • Aronson DG, Weinberger HF, 1978. Multidimensional nonlinear diffusion arising in population genetics. Adv. Math., 30: 33-76.
  • Atangana A, 2015. Derivative with a New Parameter, Academic Press.
  • Cenesiz Y, Tasbozan O, Kurt A, 2017. Functional Variable Method for conformable fractional modifed KdV-ZK equation and Maccari system. Tbilisi Mathematical Journal, 10: 117-125.
  • Fitzhugh R, 1961. Impulse and physiological states in models of nerve membrane. Biophys. J., 1: 445-466.
  • Hariharan, G., & Kannan, K., 2010. Haar wavelet method for solving FitzHugh-Nagumo equation. Int. J. Comput. Math. Sci, 2, 2.
  • Khalil R, Horani A, Yousef A, Sababheh M, 2014. A new definition of fractional derivative. Journal of Computational and Applied Mathematics, 264: 65-70.
  • Kumar, D., Singh, J., Baleanu, D., 2018. A new numerical algorithm for fractional Fitzhugh–Nagumo equation arising in transmission of nerve impulses. Nonlinear Dynamics, 91(1), 307-317.
  • Kurt A, Tasbozan O, Baleanu D, 2017. New solutions for conformable fractional Nizhnik– Novikov–Veselov system via G’/G expansion method and homotopy analysis methods. Optical and Quantum Electronics, 49: 333.
  • Li, H., Guo, Y., 2006. New exact solutions to the Fitzhugh–Nagumo equation. Applied Mathematics and Computation, 180(2), 524-528.
  • Nagumo JS, Arimoto S, Yoshizawa S, 1962. An active pulse transmission line simulating nerve axon,. Proc. IRE, 50:2061–2070.
  • Rezazadeh, H., 2018a. New solitons solutions of the complex Ginzburg-Landau equation with Kerr law nonlinearity. Optik, 167, 218-227.
  • Rezazadeh, H., Tariq, H., Eslami, M., Mirzazadeh, M., Zhou, Q., 2018b. New exact solutions of nonlinear conformable time-fractional Phi-4 equation. Chinese Journal of Physics, 56(6), 2805-2816.
  • Rezazadeh, H., Ali, K. K., Eslami, M., Mirzazadeh, M., Yépez-Martínez, H., 2019. On the soliton solutions to the space-time fractional simplified MCH equation. Journal of Interdisciplinary Mathematics, 1-17.
  • Taşbozan O, Kurt A, 2018b. New Travelling Wave Solutions for Time-Space Fractional Liouville and Sine-Gordon Equations. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 8: 295-303.
  • Taşbozan O, Senol M, Kurt A, Özkan O, 2018a. New solutions of fractional Drinfeld-Sokolov-Wilson system in shallow water waves. Ocean Engineering, 161:62-68.
  • Taşbozan O, Cenesiz Y, Kurt A, Baleanu D, 2017. New analytical solutions for conformable fractional PDEs arising in mathematical physics by exp-function method. Open Physics, 15:647-651.

New Exact Solutions of Fractional Fitzhugh-Nagumo Equation

Yıl 2019, Cilt: 9 Sayı: 3, 1633 - 1645, 01.09.2019

Öz

The main aim of this article is obtaining the travelling wave, solitary wave and periodic wave solutions for time fractional Fitzhugh-Nagumo equation which used as a model for reaction–diffusion, transmission of nerve impulses, circuit theory, biology and population genetics. The new extended direct algebraic method is employed for this aim. The fractional derivative is in conformable sense which is an applicable, well behaved and understandable definition.

Kaynakça

  • Abbasbandy, S., 2008. Soliton solutions for the Fitzhugh–Nagumo equation with the homotopy analysis method. Applied Mathematical Modelling, 32(12), 2706-2714.
  • Abdeljawad T, 2015. On conformable fractional calculus. Journal of computational and Applied Mathematics, 279:57-66.
  • Aronson DG, Weinberger HF, 1978. Multidimensional nonlinear diffusion arising in population genetics. Adv. Math., 30: 33-76.
  • Atangana A, 2015. Derivative with a New Parameter, Academic Press.
  • Cenesiz Y, Tasbozan O, Kurt A, 2017. Functional Variable Method for conformable fractional modifed KdV-ZK equation and Maccari system. Tbilisi Mathematical Journal, 10: 117-125.
  • Fitzhugh R, 1961. Impulse and physiological states in models of nerve membrane. Biophys. J., 1: 445-466.
  • Hariharan, G., & Kannan, K., 2010. Haar wavelet method for solving FitzHugh-Nagumo equation. Int. J. Comput. Math. Sci, 2, 2.
  • Khalil R, Horani A, Yousef A, Sababheh M, 2014. A new definition of fractional derivative. Journal of Computational and Applied Mathematics, 264: 65-70.
  • Kumar, D., Singh, J., Baleanu, D., 2018. A new numerical algorithm for fractional Fitzhugh–Nagumo equation arising in transmission of nerve impulses. Nonlinear Dynamics, 91(1), 307-317.
  • Kurt A, Tasbozan O, Baleanu D, 2017. New solutions for conformable fractional Nizhnik– Novikov–Veselov system via G’/G expansion method and homotopy analysis methods. Optical and Quantum Electronics, 49: 333.
  • Li, H., Guo, Y., 2006. New exact solutions to the Fitzhugh–Nagumo equation. Applied Mathematics and Computation, 180(2), 524-528.
  • Nagumo JS, Arimoto S, Yoshizawa S, 1962. An active pulse transmission line simulating nerve axon,. Proc. IRE, 50:2061–2070.
  • Rezazadeh, H., 2018a. New solitons solutions of the complex Ginzburg-Landau equation with Kerr law nonlinearity. Optik, 167, 218-227.
  • Rezazadeh, H., Tariq, H., Eslami, M., Mirzazadeh, M., Zhou, Q., 2018b. New exact solutions of nonlinear conformable time-fractional Phi-4 equation. Chinese Journal of Physics, 56(6), 2805-2816.
  • Rezazadeh, H., Ali, K. K., Eslami, M., Mirzazadeh, M., Yépez-Martínez, H., 2019. On the soliton solutions to the space-time fractional simplified MCH equation. Journal of Interdisciplinary Mathematics, 1-17.
  • Taşbozan O, Kurt A, 2018b. New Travelling Wave Solutions for Time-Space Fractional Liouville and Sine-Gordon Equations. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 8: 295-303.
  • Taşbozan O, Senol M, Kurt A, Özkan O, 2018a. New solutions of fractional Drinfeld-Sokolov-Wilson system in shallow water waves. Ocean Engineering, 161:62-68.
  • Taşbozan O, Cenesiz Y, Kurt A, Baleanu D, 2017. New analytical solutions for conformable fractional PDEs arising in mathematical physics by exp-function method. Open Physics, 15:647-651.
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Matematik / Mathematics
Yazarlar

Orkun Tasbozan 0000-0001-5003-6341

Ali Kurt 0000-0002-0617-6037

Yayımlanma Tarihi 1 Eylül 2019
Gönderilme Tarihi 15 Ocak 2019
Kabul Tarihi 14 Haziran 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 9 Sayı: 3

Kaynak Göster

APA Tasbozan, O., & Kurt, A. (2019). New Exact Solutions of Fractional Fitzhugh-Nagumo Equation. Journal of the Institute of Science and Technology, 9(3), 1633-1645.
AMA Tasbozan O, Kurt A. New Exact Solutions of Fractional Fitzhugh-Nagumo Equation. Iğdır Üniv. Fen Bil Enst. Der. Eylül 2019;9(3):1633-1645.
Chicago Tasbozan, Orkun, ve Ali Kurt. “New Exact Solutions of Fractional Fitzhugh-Nagumo Equation”. Journal of the Institute of Science and Technology 9, sy. 3 (Eylül 2019): 1633-45.
EndNote Tasbozan O, Kurt A (01 Eylül 2019) New Exact Solutions of Fractional Fitzhugh-Nagumo Equation. Journal of the Institute of Science and Technology 9 3 1633–1645.
IEEE O. Tasbozan ve A. Kurt, “New Exact Solutions of Fractional Fitzhugh-Nagumo Equation”, Iğdır Üniv. Fen Bil Enst. Der., c. 9, sy. 3, ss. 1633–1645, 2019.
ISNAD Tasbozan, Orkun - Kurt, Ali. “New Exact Solutions of Fractional Fitzhugh-Nagumo Equation”. Journal of the Institute of Science and Technology 9/3 (Eylül 2019), 1633-1645.
JAMA Tasbozan O, Kurt A. New Exact Solutions of Fractional Fitzhugh-Nagumo Equation. Iğdır Üniv. Fen Bil Enst. Der. 2019;9:1633–1645.
MLA Tasbozan, Orkun ve Ali Kurt. “New Exact Solutions of Fractional Fitzhugh-Nagumo Equation”. Journal of the Institute of Science and Technology, c. 9, sy. 3, 2019, ss. 1633-45.
Vancouver Tasbozan O, Kurt A. New Exact Solutions of Fractional Fitzhugh-Nagumo Equation. Iğdır Üniv. Fen Bil Enst. Der. 2019;9(3):1633-45.