Araştırma Makalesi
BibTex RIS Kaynak Göster

Süt Endüstrisi Atıksularının Kimyasal Arıtımının Yanıt Yüzey Yöntemi ile Optimizasyonu

Yıl 2019, Cilt: 9 Sayı: 4, 1968 - 1976, 01.12.2019
https://doi.org/10.21597/jist.554079

Öz

Bu çalışmada, yüksek kirletici yükleri ile karakterize edilen süt endüstrisi atıksularının kimyasal arıtımı amaçlanmıştır. Arıtımda koagülant olarak demir III klorür (FeCl3.6H2O) ve alüminyum sülfat (Al2(SO4)3.18H2O) kullanılmış, her iki koagülant için optimizasyon metodu olarak yanıt yüzey yönteminin (YYY) merkezi kompozit tasarımı (MKT) uygulanarak atıksudan kimyasal oksijen ihtiyacı (KOİ) ve askıda katı madde (AKM) giderimleri incelenmiştir. Yöntem yardımıyla KOİ ve AKM giderim verimlerinin hesaplanabileceği denklemler elde edilmiş, arıtma prosesini etkileyen en önemli parametreler ortaya konularak giderimleri maksimum yapan şartlar belirlenmiştir. Demir III klorür ile yapılan çalışmalarda KOİ ve AKM giderim verimlerini maksimum yapan şartlar; pH: 7.41, doz: 158.579 mg L-1 elde edilmiş ve bu şartlarda KOİ ve AKM giderim verimleri sırasıyla %80.84 ve %98.10 olmuştur. Alüminyum sülfat (alüm) ile yapılan çalışmalarda KOİ ve AKM giderim verimlerini maksimum yapan şartlar; pH: 7.29, doz: 197.475 mg L-1 elde edilmiş ve bu şartlarda KOİ ve AKM giderim verimleri ise sırasıyla %73.33 ve %96.21 olmuştur.

Kaynakça

  • Ahmad AL, Sumathi S, Hameed BH, 2006. Coagulation of Residue Oil and Suspended Solid in Palm Oil Mill Effluent by Chitosan, Alum and PAC. Chemical Engineering Journal, 118(1–2): 99–105.
  • Asaithambi P, Beyene D, Aziz ARA, Alemayehu E, 2018. Removal of Pollutants with Determination of Power Consumption from Landfill Leachate Wastewater Using an Electrocoagulation Process: Optimization Using Response Surface Methodology (RSM). Applied Water Science, 8(2): 69.
  • Behbahani M, Moghaddam MRA, Arami M, 2011. Techno-Economical Evaluation of Fluoride Removal by Electrocoagulation Process: Optimization Through Response Surface Methodology. Desalination, 271(1–3): 209–218.
  • Demirel B, Yenigun O, Onay TT, 2005. Anaerobic Treatment of Dairy Wastewaters: A Review. Process Biochemistry, 40(8): 2583–2595.
  • Ekdal A, 2000. Süt ve Süt Ürünleri Endüstrisi Atıksularının Kimyasal Arıtılabilirliği, İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü., Yüksek Lisans Tezi (Basılmış)
  • Gengec E, Kobya M, Demirbas E, Akyol A, Oktor K, 2012. Optimization of Baker’s Yeast Wastewater Using Response Surface Methodology by Electrocoagulation. Desalination, 286: 200–209.
  • Georgiopoulou M, Abeliotis K, Kornaros M, Lyberatos G, 2008. Selection of the Best Available Technology for Industrial Wastewater Treatment Based on Environmental Evaluation of Alternative Treatment Technologies: The Case of Milk Industry. Fresenius Environmental Bulletin, 17(1): 111–121.
  • Hamid HA, Jenidi Y, Thielemans W, Somerfield C, Gomes RL, 2016. Predicting the Capability of Carboxylated Cellulose Nanowhiskers for the Remediation of Copper from Water Using Response Surface Methodology (RSM) and Artificial Neural Network (ANN) Models. Industrial Crops and Products, 93: 108–120.
  • Hung YT, Britz T, Schalkwyk C, 2005. Treatment of Dairy Processing Wastewaters. Waste Treatment in the Food Processing Industry, (c): 1–28.
  • Jiang JQ, Lloyd B, 2002. Progress in the Development and Use of Ferrate(VI) Salt as an Oxidant and Coagulant for Water and Wastewater Treatment. Water Research, 36(6):1397–1408.
  • Kushwaha JP, Chandra Srivastava V, Mall ID, 2010. Treatment of Dairy Wastewater by İnorganic Coagulants: Parametric and Disposal Studies. Water Research, 44(20): 5867–5874.
  • Kushwaha JP, Srivastava VC, Mall ID, 2013. Sequential Batch Reactor for Dairy Wastewater Treatment: Parametric Optimization; Kinetics and Waste Sludge Disposal. Journal of Environmental Chemical Engineering, 1(4):1036–1043.
  • Lorestani AAZ, Bashiri H, Asadi A, Bonakdari H, 2012. Comparison of Different Fluid Dynamics in Activated Sludge System for the Treatment of a Stimulated Milk Processing Wastewater: Process Analysis and Optimization, Korean Journal of Chemical Engineering, 29(10): 1352–1361.
  • Mateus GAP, Formentini-Schmitt DM, Nishi L, Fagundes-Klen MR, Gomes RG, Bergamasco R, 2017. Coagulation/Flocculation with Moringa Oleifera and Membrane Filtration for Dairy Wastewater. Water, Air, & Soil Pollution, 228(9):342
  • Moradi N, Salem S, Salem A, 2018. Optimizing Adsorption of Blue Pigment From Wastewater by Nano-Porous Modified Na-Bentonite Using Spectrophotometry Based on Response Surface Method, Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 193: 54–62.
  • Rezaee S, Zinatizadeh AAL, Asadi A, 2015. High Rate CNP Removal from a Milk Processing Wastewater in a Single Ultrasound Augmented Up-Flow Anaerobic/Aerobic/Anoxic Bioreactor. Ultrasonics Sonochemistry, 23(289–301).
  • Rusten B, Eikebrokk, B, Thorvaldsen, G, 1990. Coagulation as Pretreatment of Food Industry Wastewater. Water Science & Technology, 22 (9): 1-8.
  • Samadi M, Saghi M, Rahmani A, Hasanvand J, Rahimi S, Syboney MS, 2010. Hamadan Landfill Leachate Treatment By Coagulation-Flocculation Process. Iran. J. Environ. Health. Sci. Eng., 7(3):253–258.
  • Sarkar B, Chakrabarti PP, Vijaykumar A, Kale V, 2006. Wastewater Treatment in Dairy Industries--Possibility of Reuse. Desalination, 195(1–3):141–152.
  • Şengil IA, Özacar M, 2006. Treatment of Dairy Wastewaters by Electrocoagulation Using Mild Steel Electrodes. Journal of Hazardous Materials, 137(2):1197–1205.
  • Slavov AK, 2017. General Characteristics and Treatment Possibilities of Dairy Wastewater -a Review. Food Technology and Biotechnology, 55(1):14–28.
  • Suárez A, Fernández P., Iglesias JR, Iglesias E, Riera FA, 2015. Cost Assessment of Membrane Processes: A Practical Example in the Dairy Wastewater Reclamation by Reverse Osmosis. Journal of Membrane Science, 493:389–402.
  • TEPGE (Tarımsal Ekonomi Ve Politika Geliştirme Enstitüsü), 2017. Durum ve Tahmin Süt ve Süt Ürünleri 2017. http://www.kayseritb.org/images/piyasa_analizleri/sut.pdf (Erişim tarihi: 12.01.2019)
  • Torres LG, Belloc C, Vaca M, Iturbe R, Bandala ER, 2009. Coagulation-Flocculation Process Applied to Wastewaters Generated in Hydrocarbon-Contaminated Soil Washing: Interactions Among Coagulant and Flocculant Concentrations and pH Value. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 44(13):1449–1456.
  • TÜİK (Türkiye İstatistik Kurumu), 2018. Süt ve Süt Ürünleri Üretimi, Ocak 2018. http://www.tuik.gov.tr/HbPrint.do?id=27674 (Erişim tarihi: 13.01.2019)

Optimization of Chemical Treatment of Dairy Industry Wastewater by Response Surface Methodology

Yıl 2019, Cilt: 9 Sayı: 4, 1968 - 1976, 01.12.2019
https://doi.org/10.21597/jist.554079

Öz

In this study, the chemical treatment of dairy industry wastewater characterized by high pollutant load is aimed. In the treatment, iron III chloride (FeCl3.6H2O) and aluminum sulphate (Al2(SO4)3.18H2O) were used as coagulants. Chemical oxygen demand (COD) and suspended solids (SS) removal were analyzed by applying the central composite design (CCD) optimization method of response surface methodology (RSM) for both coagulants. Emprical equations giving the COD and SS removal efficiency were derived by RSM. The most important parameters affecting the treatment process and the conditions maximizing the COD and SS removal were determined by the equations. As a result, the conditions that maximize the COD and SS removal efficiency of iron III chloride were obtained as pH: 7.41, dose: 158.579 mg L-1 and COD and SS removal efficiency of iron III chloride at these conditions were 80.84% and 98.10%, respectively. Also, the conditions maximizing the COD and SS removal efficiency of aluminum sulphate (alum) were obtained as pH: 7.29, dose: 197.475 mg L-1 and COD and SS removal efficiency of alum at these conditions were obtained as 73.33% and 96.21%, respectively.

Kaynakça

  • Ahmad AL, Sumathi S, Hameed BH, 2006. Coagulation of Residue Oil and Suspended Solid in Palm Oil Mill Effluent by Chitosan, Alum and PAC. Chemical Engineering Journal, 118(1–2): 99–105.
  • Asaithambi P, Beyene D, Aziz ARA, Alemayehu E, 2018. Removal of Pollutants with Determination of Power Consumption from Landfill Leachate Wastewater Using an Electrocoagulation Process: Optimization Using Response Surface Methodology (RSM). Applied Water Science, 8(2): 69.
  • Behbahani M, Moghaddam MRA, Arami M, 2011. Techno-Economical Evaluation of Fluoride Removal by Electrocoagulation Process: Optimization Through Response Surface Methodology. Desalination, 271(1–3): 209–218.
  • Demirel B, Yenigun O, Onay TT, 2005. Anaerobic Treatment of Dairy Wastewaters: A Review. Process Biochemistry, 40(8): 2583–2595.
  • Ekdal A, 2000. Süt ve Süt Ürünleri Endüstrisi Atıksularının Kimyasal Arıtılabilirliği, İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü., Yüksek Lisans Tezi (Basılmış)
  • Gengec E, Kobya M, Demirbas E, Akyol A, Oktor K, 2012. Optimization of Baker’s Yeast Wastewater Using Response Surface Methodology by Electrocoagulation. Desalination, 286: 200–209.
  • Georgiopoulou M, Abeliotis K, Kornaros M, Lyberatos G, 2008. Selection of the Best Available Technology for Industrial Wastewater Treatment Based on Environmental Evaluation of Alternative Treatment Technologies: The Case of Milk Industry. Fresenius Environmental Bulletin, 17(1): 111–121.
  • Hamid HA, Jenidi Y, Thielemans W, Somerfield C, Gomes RL, 2016. Predicting the Capability of Carboxylated Cellulose Nanowhiskers for the Remediation of Copper from Water Using Response Surface Methodology (RSM) and Artificial Neural Network (ANN) Models. Industrial Crops and Products, 93: 108–120.
  • Hung YT, Britz T, Schalkwyk C, 2005. Treatment of Dairy Processing Wastewaters. Waste Treatment in the Food Processing Industry, (c): 1–28.
  • Jiang JQ, Lloyd B, 2002. Progress in the Development and Use of Ferrate(VI) Salt as an Oxidant and Coagulant for Water and Wastewater Treatment. Water Research, 36(6):1397–1408.
  • Kushwaha JP, Chandra Srivastava V, Mall ID, 2010. Treatment of Dairy Wastewater by İnorganic Coagulants: Parametric and Disposal Studies. Water Research, 44(20): 5867–5874.
  • Kushwaha JP, Srivastava VC, Mall ID, 2013. Sequential Batch Reactor for Dairy Wastewater Treatment: Parametric Optimization; Kinetics and Waste Sludge Disposal. Journal of Environmental Chemical Engineering, 1(4):1036–1043.
  • Lorestani AAZ, Bashiri H, Asadi A, Bonakdari H, 2012. Comparison of Different Fluid Dynamics in Activated Sludge System for the Treatment of a Stimulated Milk Processing Wastewater: Process Analysis and Optimization, Korean Journal of Chemical Engineering, 29(10): 1352–1361.
  • Mateus GAP, Formentini-Schmitt DM, Nishi L, Fagundes-Klen MR, Gomes RG, Bergamasco R, 2017. Coagulation/Flocculation with Moringa Oleifera and Membrane Filtration for Dairy Wastewater. Water, Air, & Soil Pollution, 228(9):342
  • Moradi N, Salem S, Salem A, 2018. Optimizing Adsorption of Blue Pigment From Wastewater by Nano-Porous Modified Na-Bentonite Using Spectrophotometry Based on Response Surface Method, Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 193: 54–62.
  • Rezaee S, Zinatizadeh AAL, Asadi A, 2015. High Rate CNP Removal from a Milk Processing Wastewater in a Single Ultrasound Augmented Up-Flow Anaerobic/Aerobic/Anoxic Bioreactor. Ultrasonics Sonochemistry, 23(289–301).
  • Rusten B, Eikebrokk, B, Thorvaldsen, G, 1990. Coagulation as Pretreatment of Food Industry Wastewater. Water Science & Technology, 22 (9): 1-8.
  • Samadi M, Saghi M, Rahmani A, Hasanvand J, Rahimi S, Syboney MS, 2010. Hamadan Landfill Leachate Treatment By Coagulation-Flocculation Process. Iran. J. Environ. Health. Sci. Eng., 7(3):253–258.
  • Sarkar B, Chakrabarti PP, Vijaykumar A, Kale V, 2006. Wastewater Treatment in Dairy Industries--Possibility of Reuse. Desalination, 195(1–3):141–152.
  • Şengil IA, Özacar M, 2006. Treatment of Dairy Wastewaters by Electrocoagulation Using Mild Steel Electrodes. Journal of Hazardous Materials, 137(2):1197–1205.
  • Slavov AK, 2017. General Characteristics and Treatment Possibilities of Dairy Wastewater -a Review. Food Technology and Biotechnology, 55(1):14–28.
  • Suárez A, Fernández P., Iglesias JR, Iglesias E, Riera FA, 2015. Cost Assessment of Membrane Processes: A Practical Example in the Dairy Wastewater Reclamation by Reverse Osmosis. Journal of Membrane Science, 493:389–402.
  • TEPGE (Tarımsal Ekonomi Ve Politika Geliştirme Enstitüsü), 2017. Durum ve Tahmin Süt ve Süt Ürünleri 2017. http://www.kayseritb.org/images/piyasa_analizleri/sut.pdf (Erişim tarihi: 12.01.2019)
  • Torres LG, Belloc C, Vaca M, Iturbe R, Bandala ER, 2009. Coagulation-Flocculation Process Applied to Wastewaters Generated in Hydrocarbon-Contaminated Soil Washing: Interactions Among Coagulant and Flocculant Concentrations and pH Value. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 44(13):1449–1456.
  • TÜİK (Türkiye İstatistik Kurumu), 2018. Süt ve Süt Ürünleri Üretimi, Ocak 2018. http://www.tuik.gov.tr/HbPrint.do?id=27674 (Erişim tarihi: 13.01.2019)
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Çevre Mühendisliği
Bölüm Çevre Mühendisliği / Environment Engineering
Yazarlar

Elif Ozmetin 0000-0002-3318-4083

Yayımlanma Tarihi 1 Aralık 2019
Gönderilme Tarihi 15 Nisan 2019
Kabul Tarihi 30 Haziran 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 9 Sayı: 4

Kaynak Göster

APA Ozmetin, E. (2019). Süt Endüstrisi Atıksularının Kimyasal Arıtımının Yanıt Yüzey Yöntemi ile Optimizasyonu. Journal of the Institute of Science and Technology, 9(4), 1968-1976. https://doi.org/10.21597/jist.554079
AMA Ozmetin E. Süt Endüstrisi Atıksularının Kimyasal Arıtımının Yanıt Yüzey Yöntemi ile Optimizasyonu. Iğdır Üniv. Fen Bil Enst. Der. Aralık 2019;9(4):1968-1976. doi:10.21597/jist.554079
Chicago Ozmetin, Elif. “Süt Endüstrisi Atıksularının Kimyasal Arıtımının Yanıt Yüzey Yöntemi Ile Optimizasyonu”. Journal of the Institute of Science and Technology 9, sy. 4 (Aralık 2019): 1968-76. https://doi.org/10.21597/jist.554079.
EndNote Ozmetin E (01 Aralık 2019) Süt Endüstrisi Atıksularının Kimyasal Arıtımının Yanıt Yüzey Yöntemi ile Optimizasyonu. Journal of the Institute of Science and Technology 9 4 1968–1976.
IEEE E. Ozmetin, “Süt Endüstrisi Atıksularının Kimyasal Arıtımının Yanıt Yüzey Yöntemi ile Optimizasyonu”, Iğdır Üniv. Fen Bil Enst. Der., c. 9, sy. 4, ss. 1968–1976, 2019, doi: 10.21597/jist.554079.
ISNAD Ozmetin, Elif. “Süt Endüstrisi Atıksularının Kimyasal Arıtımının Yanıt Yüzey Yöntemi Ile Optimizasyonu”. Journal of the Institute of Science and Technology 9/4 (Aralık 2019), 1968-1976. https://doi.org/10.21597/jist.554079.
JAMA Ozmetin E. Süt Endüstrisi Atıksularının Kimyasal Arıtımının Yanıt Yüzey Yöntemi ile Optimizasyonu. Iğdır Üniv. Fen Bil Enst. Der. 2019;9:1968–1976.
MLA Ozmetin, Elif. “Süt Endüstrisi Atıksularının Kimyasal Arıtımının Yanıt Yüzey Yöntemi Ile Optimizasyonu”. Journal of the Institute of Science and Technology, c. 9, sy. 4, 2019, ss. 1968-76, doi:10.21597/jist.554079.
Vancouver Ozmetin E. Süt Endüstrisi Atıksularının Kimyasal Arıtımının Yanıt Yüzey Yöntemi ile Optimizasyonu. Iğdır Üniv. Fen Bil Enst. Der. 2019;9(4):1968-76.