In this study, the thermodynamic cycle of a turboshaft engine whose design parameters were determined in accordance with an agricultural spraying unmanned helicopter was performed. After the solid model of the unmanned helicopter was created, a tank was designed to carry additives and water. The design requirements of the turboshaft engine were determined by deciding the maximum power requirement of the unmanned helicopter in accordance with the design parameters of the tank. The performance parameters of each component of the turboshaft engine are presented through diagrams. In addition, entropy generation (exergy destruction) and loop diagrams are presented to the literature depending on performance parameters. This study provides evidence that the design parameters of a manned and/or unmanned helicopter should be considered depending on the environmental conditions. The effect of ambient temperature and pressure varying with altitude on all components of the engine appears as the rate of exergy destruction. Thereby, it is necessary to analyze the ambient temperature and pressure in determining the required design parameters. The relationship of temperature-pressure-entropy production according to the station numbers of the engine is presented through diagrams. It is clearly seen that entropy production increases with the increase in temperature in the components of the turboshaft. Since the aero-vehicle needs maximum power requirements during the take-off phase and its power is associated with temperature, pressure and many other parameters, the take-off phase is an important process in all flight stages.
Unmanned helicopter turboshaft thermodynamic analysis exergy
In this study, the thermodynamic cycle of a turboshaft engine whose design parameters were determined in accordance with an agricultural spraying unmanned helicopter was performed. After the solid model of the unmanned helicopter was created, a tank was designed to carry additives and water. The design requirements of the turboshaft engine were determined by deciding the maximum power requirement of the unmanned helicopter in accordance with the design parameters of the tank. The performance parameters of each component of the turboshaft engine are presented through diagrams. In addition, entropy generation (exergy destruction) and loop diagrams are presented to the literature depending on performance parameters. This study provides evidence that the design parameters of a manned and/or unmanned helicopter should be considered depending on the environmental conditions. The effect of ambient temperature and pressure varying with altitude on all components of the engine appears as the rate of exergy destruction. Thereby, it is necessary to analyze the ambient temperature and pressure in determining the required design parameters. The relationship of temperature-pressure-entropy production according to the station numbers of the engine is presented through diagrams. It is clearly seen that entropy production increases with the increase in temperature in the components of the turboshaft. Since the aero-vehicle needs maximum power requirements during the take-off phase and its power is associated with temperature, pressure and many other parameters, the take-off phase is an important process in all flight stages.
Unmanned helicopter turboshaft exergy thermodynamic analysis
Birincil Dil | İngilizce |
---|---|
Konular | Makine Mühendisliği |
Bölüm | Makina Mühendisliği / Mechanical Engineering |
Yazarlar | |
Yayımlanma Tarihi | 1 Mart 2020 |
Gönderilme Tarihi | 30 Ekim 2019 |
Kabul Tarihi | 23 Ocak 2020 |
Yayımlandığı Sayı | Yıl 2020 Cilt: 10 Sayı: 1 |