Araştırma Makalesi
BibTex RIS Kaynak Göster

Kadmiyum Stresi Altındaki Çilek (Fragaria x ananassa “Camarosa”) Bitkisinde Metil Jasmonat Uygulamalarının Bazı Büyüme Parametreleri Üzerine Etkileri

Yıl 2020, Cilt: 10 Sayı: 2, 714 - 722, 01.06.2020
https://doi.org/10.21597/jist.651203

Öz

Ağır metaller bitki için temel besin maddesi olmayan genellikle toksik etkiye sahip elementlerdirler. Kadmiyum bitki büyüme ve gelişmesini ciddi sınırlandırabilen ve çevreye olumsuz etkileri olduğu iyi bilinen en önemli toksik metallerden biridir. Bitkisel hormonlar, bitki bünyesindeki hormonların üretim, dağıtım veya sinyal çevrimini değiştirerek çevre koşullarına karşı değişen tepkiyi vermesi yanında bitki büyüme ve gelişmesini düzenleyen küçük moleküllerdirler. Jasmonatlar (JAs) birçok ileri bitki süreçlerini düzenlemekte ve olumsuz çevreresel stres faktörlerine karşı bitki savunma mekanizmasında aktif bir rol oynamaktadırlar. Bu çalışmada, ağır metal (kadmiyum) stresinde dışsal metil jasmonat (MeJa) uygulamalarının çilek (Camarosa ) bitkisinde bazı büyüme parametreleri üzerine etkilerinin belirlenmesi hedeflenmiştir. Çalışmada kadmiyum konsantrasyonun artışına paralel olarak çilek bitkisinde incelenen büyüme parametrelerinde düşüş belirlenmiştir. Bununla birlikte, metil jasmonat uygulamalarının kadmiyum toksitesini hafiflettiği ve uygulama dozuna bağlı olarak çilek bitkisinde kök sayısı, kök ağırlığı, gövde ağırlığı ve yaprak alanında artış sağladığı belirlenmiştir. Elde edilen sonuçlar kadmiyum uygulamalarının çilek bitkisinin büyümesi üzerine olumsuz etkilerinin olduğu ve metil jasmonat uygulamalarının ise kadmiyum stresinin azaltılmasında önemli bir rol oynadığı belirlenmiştir.

Kaynakça

  • Ahmad P, Abd Allah E, Hashem A, Sarwat M, Gucel S, 2016. Exogenous Application of Selenium Mitigates Cadmium Toxicity In Brassica Juncea L (Czern & Cross) by Up-Regulating Antioxidative System and Secondary Metabolites. Journal Plant Growth Regulation, 35:936–950.
  • Ahmad P, Alyemeni MN, Wijaya L, Alam P, Ahanger MA, Alam SA, 2017. Jasmonic Acid Alleviates Negative İmpacts of Cadmium Stress By Modifying Osmolytes and Antioxidants İn Faba (Vicia faba L.). Archives of Agronomy and Soil Science, 63:1889-1899.
  • Bajguz A, 2009. Brassinosteroid Enhanced The Level of Abscisic Acid In Chlorella Vulgaris Subjected to Short-Term Heat Stress. Journal Plant Physiol, 166:882-886.
  • Chen J, Yan Z,. Li X, 2014. Effect of Methyl Jasmonate on Cadmium Uptake and Antioxidative Capacity İn Kandelia Obovata Seedlings Under Cadmium Stress. Ecotoxicology and Environmental Safety, 104:349–356.
  • Chen YX, He YF, Luo YM, Yu YL, Lin Q, Wong MH, 2003. Physiological Mechanism of Plant Roots Exposed to Cadmium. Chemosphere;50:789–93.
  • Cho UH, Seo NH, 2005. Oxidative Stress In Arabidopsis Thaliana Exposed to Cadmium Is Due to Hydrogen Peroxide Accumulation. Plant Science, 168:113–120.
  • Dar TA, Uddin M, Khan MMA, Hakeem KR, Jaleel H, 2015. Jasmonates Counter Plant Stress: A Review. Environmental and Experimental Botany, 115:49-57
  • Dias MC, Monteiro C, Moutinho-Pereira J, Correia C, Goncalves B, Santos C, 2013. Cadmium Toxicity Affects Photosynthesis and Plant Growth at Different Levels. Acta Physiologiae Plantarum, 35:1281–1289.
  • Farmer EE, Ryan CA, 1992. Octadenoic Precursors of Jasmonic Acid Activate The Synthesis of Wound-İnducible Proteinase İnhibitors. Plant Cell, 4:129–134.
  • Finger-Teixeira A, Ferrarese Mde L, Soares AR, da Silva D, Ferrarese-Filho O, 2010. Cadmium-İnduced Lignification Restricts Soybean Root Growth. Ecotoxicology and Environmental Safety, 73(8):1959-1964.
  • Gundlach H, Muller MJ, Kutchan TM, Zenk MH, 1992. Jasmonic Acid İs A Signal Transducer İn Elicitor-İnduced Plant Cell Cultures. Proceeding of Nationaal Academy of Science of the United States of America, 89:2389–2393.
  • Hassan M, Mansoor S, 2014. Oxidative Stress and Antioxidant Defense Mechanism In Mung Bean Seedlings After Lead and Cadmium Treatments. Turkish Journal of Agriculture and Foresty, 38:55–61.
  • Huang B, Xin J, Dai H, Liu A, Zhou W, Yi Y, Liao K, 2015. Root Morphological Responses of Three Hot Pepper Cultivars to Cd Exposure and Their Correlations With Cd Accumulation. Environmental Science and Pollution Research İnternational, 22:1151-1159.
  • Iqbal N, Umar S, Khan NA, Khan MIR, 2014. A New Perspective of Phytohormones In Salinity Tolerance: Regulation of Proline Metabolism. Environmental and Experimental Botany, 100:34–42.
  • Kaya A, Doğanlar ZB, 2016. Exogenous Jasmonic Acid Induced Stress Tolerance In Tabacco (Nicotiana tabacum) Exposed to Imazapic. Ecotoxicol Environmental Safety, 124:470-479.
  • Keramat B, Kalantari KM, Arvin MJ, 2009. Effect of Methyl Jasmonate İn Regulating Cadmium İnduced Oxidative Stress İn Soybean Plant (Glycine max L.). African Journal of Mikrobiology Research 3:240-244.
  • Khan AS, Chaudhry NY, 2006. GA3 Improves Flower Yield In Some Cucurbits Treated With Lead and Mercury. African Journal of Biotechnology, 5:149-153
  • Kranner I, Colville L, 2011. Metals And Seeds; Biochem. Cell and Moleculer Implications and Their Significance for Seed Germination. Environmental and Experimental Botany, 72:93-105.
  • Leo´n J, Rojo E, Sanchez-Serrano JJ, 2001. Wound Signalling İn Plants. Journal of Experimental Botany, 52:1–9
  • Leon AM, Palma JM, Corpas FJ, Gomez M, Romero-Puertas MC, Chatterjee D, Mateos RM, del Rio LA, Sandalio LM, 2002. Antioxidative Enzymes İn Cultivars of Pepper Plants With Different Sensitivity to Cadmium. Plant Physiology and Biochemistry, 40:813-820.
  • Li Y, Nie Y, Zhang Z, Ye Z, Zou X, Zhang LH, Wang Z, 2014. Comparative Proteomic Analysis of Methyl Jasmonate Induce Defense Responses In Different Rice Cultivars. Proteomics, 14:1088-1101.
  • Mishra S, Srivastava S, Tripathi RD, Govidarajan R, Kuriakose SV, Prasad MNV, 2006. Phytochelatin Synthesis And Response of Antioxidants During Cadmium Stress İn Bacopa Monnieri L. Plant Physiology and Biochemistry, 44:25–37.
  • Moons A, Prinsen E, Bauw G, Van Montagu M, 1997. Antagonistic Effects of Abscisic Acid and Jasmonates on Salt Stress-İnducible Transcripts İn Rice Roots. Plant Cell, 9:2243-2259.
  • Muradoğlu F, Yıldız K, Balta F, 2010. Methyl jasmonate ınfluences of pollen germination and pollen tube growth of Apricot (Prunus armeniaca L.). Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 20(3):183-188.
  • Muradoğlu F, Gündoğdu M, Ercisli S, Encu T, Balta F, Jaafar HZ, Zia-Ul-Haq M, 2015. Cadmium Toxicity Affects Chlorophyll A and B Content, Antioxidant Enzyme Activities and Mineral Nutrient Accumulation İn Strawberry. Biological Research, 48:1-7.
  • Muradoğlu F, Gündogdu M, Encu T, Geçer MK, Başak İ, 2016. Kadmiyum ve Kurşun Toksisitesinin Çilek Bitkisinde (Fragaria x ananassa) Bazı Büyüme Parametreleri Üzerine Etkileri. Bahçe, 45:527-532.
  • Noriega G, Cruz DS, Batlle A, Tomaro M, Balestrasse K, 2012. Heme Oxygenase İs İnvolved İn The Protection Exerted By Jasmonic Acid Against Cadmium Stress İn Soybean Roots. Journal of Plant Growth Regulation, 31:79-89.
  • Özbek K, Cebel N, Unver I, 2014. Extractability and Phytoavailability of Cadmium In Cd-Rich Pedogenic Soils. Turkish Journal of Agriculture and Foresty, 38:70–9.
  • Sayed SA, 1999. Effects of Lead and Kinetin on The Growth. and Some Physiological Components of Safflower. Plant Growth Regulation, 29:167-174.
  • Sembdner G, Parthier B, 1993. The Biochemistry and The Physiological and Molecular Actions of Jasmonates. Annual Review of Plant Physiology and Plant Molecular Biology, 44:569–589.
  • Singh A, Prasad SM, 2014. Effect of Agro-Industrial Waste Amendment on Cd Uptake In Amaranthus Caudatus Grown Under Contaminated Soil: An Oxidative Biomarker Response. Ecotoxicology and Environmental Safety, 100:105–113.
  • Singh I, Shah K, 2014. Exogenous Application of Methyl Jasmonate Lowers The Effect of Cadmium-İnduced Oxidative İnjury İn Rice Seedlings. Phytochemistry, 108:57–66.
  • Xin J, Huang B, Dai H, Liu A, Zhou W, Liao K, 2014. Characterization of Cadmium Uptake. Translocation. and Distribution İn Young Seedlings of Two Hot Pepper Cultivars That Differ İn Fruit Cadmium Concentration. Environmental Science and Pollution Research İnternational, 21:7449-7456.
  • Yan Z, Li X, Chen J, Tam NF, 2015. Combined Toxicity of Cadmium and Copper İn Avicennia Marina Seedlings And The Regulation of Exogenous Jasmonic Acid. Ecotoxicology and Environmental Safety, 113:124–132.
  • Yıldız K, Yılmaz H, 2002. Effect of Jasmonic Acid. ACC and Ethephon on Pollen Germination İn Strawberry. Plant Growth Regulation, 38:145–148.
  • Zhao S, Ma Q, Xu X, Li G, Hao L, 2016. Tomato Jasmonic Acid-Deficient Mutant spr2 Seedling Response to Cadmium Stress. Journal Plant Growth Regulation, 35:603–610.

The Effect of Methyl Jasmonate Applications on Some Growth Parameters in Strawberry (Fragaria x ananassa “Camarosa”) Plant under Cadmium Stress

Yıl 2020, Cilt: 10 Sayı: 2, 714 - 722, 01.06.2020
https://doi.org/10.21597/jist.651203

Öz

Heavy metals which are not the essential plant nutrients for plants generally have toxicity effect. Cadmium is one of the most important toxin metals well known to have a negative impact on the environment and can severely limit plant growth and development. Plant hormones are small molecules that regulate plant growth and development, as well as changing the production, distribution or signal cycle of the hormones within the plant, changing the environmental conditions. Jasmonates (JAs) regulate many advanced plant processes and play an active role in plant defense mechanisms against adverse environmental stress. The present study was aim to test the effect of exogenously applied methyl jasmonate (MeJa) on some growth parameters of strawberry (Camarosa cv.) plant exposed to heavy metal (Cd) stress. In study, growth parameter of the strawberry plant was decreased parallel with the application of increasing concentrations of Cd. On the other hand, exogenously applied of methyl jasmonate was modify of cadmium toxicity and root number, root weight, body weight, and leaf weight rose with depending on methyl Jasmonate dose. The results presented in this work suggested that Cd treatments have a negative effect on growth and methyl jasmonate apply plays an important role in the strawberry decreasing to cadmium stress.

Kaynakça

  • Ahmad P, Abd Allah E, Hashem A, Sarwat M, Gucel S, 2016. Exogenous Application of Selenium Mitigates Cadmium Toxicity In Brassica Juncea L (Czern & Cross) by Up-Regulating Antioxidative System and Secondary Metabolites. Journal Plant Growth Regulation, 35:936–950.
  • Ahmad P, Alyemeni MN, Wijaya L, Alam P, Ahanger MA, Alam SA, 2017. Jasmonic Acid Alleviates Negative İmpacts of Cadmium Stress By Modifying Osmolytes and Antioxidants İn Faba (Vicia faba L.). Archives of Agronomy and Soil Science, 63:1889-1899.
  • Bajguz A, 2009. Brassinosteroid Enhanced The Level of Abscisic Acid In Chlorella Vulgaris Subjected to Short-Term Heat Stress. Journal Plant Physiol, 166:882-886.
  • Chen J, Yan Z,. Li X, 2014. Effect of Methyl Jasmonate on Cadmium Uptake and Antioxidative Capacity İn Kandelia Obovata Seedlings Under Cadmium Stress. Ecotoxicology and Environmental Safety, 104:349–356.
  • Chen YX, He YF, Luo YM, Yu YL, Lin Q, Wong MH, 2003. Physiological Mechanism of Plant Roots Exposed to Cadmium. Chemosphere;50:789–93.
  • Cho UH, Seo NH, 2005. Oxidative Stress In Arabidopsis Thaliana Exposed to Cadmium Is Due to Hydrogen Peroxide Accumulation. Plant Science, 168:113–120.
  • Dar TA, Uddin M, Khan MMA, Hakeem KR, Jaleel H, 2015. Jasmonates Counter Plant Stress: A Review. Environmental and Experimental Botany, 115:49-57
  • Dias MC, Monteiro C, Moutinho-Pereira J, Correia C, Goncalves B, Santos C, 2013. Cadmium Toxicity Affects Photosynthesis and Plant Growth at Different Levels. Acta Physiologiae Plantarum, 35:1281–1289.
  • Farmer EE, Ryan CA, 1992. Octadenoic Precursors of Jasmonic Acid Activate The Synthesis of Wound-İnducible Proteinase İnhibitors. Plant Cell, 4:129–134.
  • Finger-Teixeira A, Ferrarese Mde L, Soares AR, da Silva D, Ferrarese-Filho O, 2010. Cadmium-İnduced Lignification Restricts Soybean Root Growth. Ecotoxicology and Environmental Safety, 73(8):1959-1964.
  • Gundlach H, Muller MJ, Kutchan TM, Zenk MH, 1992. Jasmonic Acid İs A Signal Transducer İn Elicitor-İnduced Plant Cell Cultures. Proceeding of Nationaal Academy of Science of the United States of America, 89:2389–2393.
  • Hassan M, Mansoor S, 2014. Oxidative Stress and Antioxidant Defense Mechanism In Mung Bean Seedlings After Lead and Cadmium Treatments. Turkish Journal of Agriculture and Foresty, 38:55–61.
  • Huang B, Xin J, Dai H, Liu A, Zhou W, Yi Y, Liao K, 2015. Root Morphological Responses of Three Hot Pepper Cultivars to Cd Exposure and Their Correlations With Cd Accumulation. Environmental Science and Pollution Research İnternational, 22:1151-1159.
  • Iqbal N, Umar S, Khan NA, Khan MIR, 2014. A New Perspective of Phytohormones In Salinity Tolerance: Regulation of Proline Metabolism. Environmental and Experimental Botany, 100:34–42.
  • Kaya A, Doğanlar ZB, 2016. Exogenous Jasmonic Acid Induced Stress Tolerance In Tabacco (Nicotiana tabacum) Exposed to Imazapic. Ecotoxicol Environmental Safety, 124:470-479.
  • Keramat B, Kalantari KM, Arvin MJ, 2009. Effect of Methyl Jasmonate İn Regulating Cadmium İnduced Oxidative Stress İn Soybean Plant (Glycine max L.). African Journal of Mikrobiology Research 3:240-244.
  • Khan AS, Chaudhry NY, 2006. GA3 Improves Flower Yield In Some Cucurbits Treated With Lead and Mercury. African Journal of Biotechnology, 5:149-153
  • Kranner I, Colville L, 2011. Metals And Seeds; Biochem. Cell and Moleculer Implications and Their Significance for Seed Germination. Environmental and Experimental Botany, 72:93-105.
  • Leo´n J, Rojo E, Sanchez-Serrano JJ, 2001. Wound Signalling İn Plants. Journal of Experimental Botany, 52:1–9
  • Leon AM, Palma JM, Corpas FJ, Gomez M, Romero-Puertas MC, Chatterjee D, Mateos RM, del Rio LA, Sandalio LM, 2002. Antioxidative Enzymes İn Cultivars of Pepper Plants With Different Sensitivity to Cadmium. Plant Physiology and Biochemistry, 40:813-820.
  • Li Y, Nie Y, Zhang Z, Ye Z, Zou X, Zhang LH, Wang Z, 2014. Comparative Proteomic Analysis of Methyl Jasmonate Induce Defense Responses In Different Rice Cultivars. Proteomics, 14:1088-1101.
  • Mishra S, Srivastava S, Tripathi RD, Govidarajan R, Kuriakose SV, Prasad MNV, 2006. Phytochelatin Synthesis And Response of Antioxidants During Cadmium Stress İn Bacopa Monnieri L. Plant Physiology and Biochemistry, 44:25–37.
  • Moons A, Prinsen E, Bauw G, Van Montagu M, 1997. Antagonistic Effects of Abscisic Acid and Jasmonates on Salt Stress-İnducible Transcripts İn Rice Roots. Plant Cell, 9:2243-2259.
  • Muradoğlu F, Yıldız K, Balta F, 2010. Methyl jasmonate ınfluences of pollen germination and pollen tube growth of Apricot (Prunus armeniaca L.). Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 20(3):183-188.
  • Muradoğlu F, Gündoğdu M, Ercisli S, Encu T, Balta F, Jaafar HZ, Zia-Ul-Haq M, 2015. Cadmium Toxicity Affects Chlorophyll A and B Content, Antioxidant Enzyme Activities and Mineral Nutrient Accumulation İn Strawberry. Biological Research, 48:1-7.
  • Muradoğlu F, Gündogdu M, Encu T, Geçer MK, Başak İ, 2016. Kadmiyum ve Kurşun Toksisitesinin Çilek Bitkisinde (Fragaria x ananassa) Bazı Büyüme Parametreleri Üzerine Etkileri. Bahçe, 45:527-532.
  • Noriega G, Cruz DS, Batlle A, Tomaro M, Balestrasse K, 2012. Heme Oxygenase İs İnvolved İn The Protection Exerted By Jasmonic Acid Against Cadmium Stress İn Soybean Roots. Journal of Plant Growth Regulation, 31:79-89.
  • Özbek K, Cebel N, Unver I, 2014. Extractability and Phytoavailability of Cadmium In Cd-Rich Pedogenic Soils. Turkish Journal of Agriculture and Foresty, 38:70–9.
  • Sayed SA, 1999. Effects of Lead and Kinetin on The Growth. and Some Physiological Components of Safflower. Plant Growth Regulation, 29:167-174.
  • Sembdner G, Parthier B, 1993. The Biochemistry and The Physiological and Molecular Actions of Jasmonates. Annual Review of Plant Physiology and Plant Molecular Biology, 44:569–589.
  • Singh A, Prasad SM, 2014. Effect of Agro-Industrial Waste Amendment on Cd Uptake In Amaranthus Caudatus Grown Under Contaminated Soil: An Oxidative Biomarker Response. Ecotoxicology and Environmental Safety, 100:105–113.
  • Singh I, Shah K, 2014. Exogenous Application of Methyl Jasmonate Lowers The Effect of Cadmium-İnduced Oxidative İnjury İn Rice Seedlings. Phytochemistry, 108:57–66.
  • Xin J, Huang B, Dai H, Liu A, Zhou W, Liao K, 2014. Characterization of Cadmium Uptake. Translocation. and Distribution İn Young Seedlings of Two Hot Pepper Cultivars That Differ İn Fruit Cadmium Concentration. Environmental Science and Pollution Research İnternational, 21:7449-7456.
  • Yan Z, Li X, Chen J, Tam NF, 2015. Combined Toxicity of Cadmium and Copper İn Avicennia Marina Seedlings And The Regulation of Exogenous Jasmonic Acid. Ecotoxicology and Environmental Safety, 113:124–132.
  • Yıldız K, Yılmaz H, 2002. Effect of Jasmonic Acid. ACC and Ethephon on Pollen Germination İn Strawberry. Plant Growth Regulation, 38:145–148.
  • Zhao S, Ma Q, Xu X, Li G, Hao L, 2016. Tomato Jasmonic Acid-Deficient Mutant spr2 Seedling Response to Cadmium Stress. Journal Plant Growth Regulation, 35:603–610.
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Bahçe Bitkileri Yetiştirme ve Islahı
Bölüm Bahçe Bitkileri / Horticulture
Yazarlar

Ferhad Muradoğlu 0000-0001-6595-7100

Rana Baytın Bu kişi benim 0000-0002-2814-2110

İbrahim Başak Bu kişi benim 0000-0002-5160-3229

Gökhan Akkuş Bu kişi benim 0000-0003-0675-755X

Yayımlanma Tarihi 1 Haziran 2020
Gönderilme Tarihi 26 Kasım 2019
Kabul Tarihi 12 Ocak 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 10 Sayı: 2

Kaynak Göster

APA Muradoğlu, F., Baytın, R., Başak, İ., Akkuş, G. (2020). Kadmiyum Stresi Altındaki Çilek (Fragaria x ananassa “Camarosa”) Bitkisinde Metil Jasmonat Uygulamalarının Bazı Büyüme Parametreleri Üzerine Etkileri. Journal of the Institute of Science and Technology, 10(2), 714-722. https://doi.org/10.21597/jist.651203
AMA Muradoğlu F, Baytın R, Başak İ, Akkuş G. Kadmiyum Stresi Altındaki Çilek (Fragaria x ananassa “Camarosa”) Bitkisinde Metil Jasmonat Uygulamalarının Bazı Büyüme Parametreleri Üzerine Etkileri. Iğdır Üniv. Fen Bil Enst. Der. Haziran 2020;10(2):714-722. doi:10.21597/jist.651203
Chicago Muradoğlu, Ferhad, Rana Baytın, İbrahim Başak, ve Gökhan Akkuş. “Kadmiyum Stresi Altındaki Çilek (Fragaria X Ananassa ‘Camarosa’) Bitkisinde Metil Jasmonat Uygulamalarının Bazı Büyüme Parametreleri Üzerine Etkileri”. Journal of the Institute of Science and Technology 10, sy. 2 (Haziran 2020): 714-22. https://doi.org/10.21597/jist.651203.
EndNote Muradoğlu F, Baytın R, Başak İ, Akkuş G (01 Haziran 2020) Kadmiyum Stresi Altındaki Çilek (Fragaria x ananassa “Camarosa”) Bitkisinde Metil Jasmonat Uygulamalarının Bazı Büyüme Parametreleri Üzerine Etkileri. Journal of the Institute of Science and Technology 10 2 714–722.
IEEE F. Muradoğlu, R. Baytın, İ. Başak, ve G. Akkuş, “Kadmiyum Stresi Altındaki Çilek (Fragaria x ananassa ‘Camarosa’) Bitkisinde Metil Jasmonat Uygulamalarının Bazı Büyüme Parametreleri Üzerine Etkileri”, Iğdır Üniv. Fen Bil Enst. Der., c. 10, sy. 2, ss. 714–722, 2020, doi: 10.21597/jist.651203.
ISNAD Muradoğlu, Ferhad vd. “Kadmiyum Stresi Altındaki Çilek (Fragaria X Ananassa ‘Camarosa’) Bitkisinde Metil Jasmonat Uygulamalarının Bazı Büyüme Parametreleri Üzerine Etkileri”. Journal of the Institute of Science and Technology 10/2 (Haziran 2020), 714-722. https://doi.org/10.21597/jist.651203.
JAMA Muradoğlu F, Baytın R, Başak İ, Akkuş G. Kadmiyum Stresi Altındaki Çilek (Fragaria x ananassa “Camarosa”) Bitkisinde Metil Jasmonat Uygulamalarının Bazı Büyüme Parametreleri Üzerine Etkileri. Iğdır Üniv. Fen Bil Enst. Der. 2020;10:714–722.
MLA Muradoğlu, Ferhad vd. “Kadmiyum Stresi Altındaki Çilek (Fragaria X Ananassa ‘Camarosa’) Bitkisinde Metil Jasmonat Uygulamalarının Bazı Büyüme Parametreleri Üzerine Etkileri”. Journal of the Institute of Science and Technology, c. 10, sy. 2, 2020, ss. 714-22, doi:10.21597/jist.651203.
Vancouver Muradoğlu F, Baytın R, Başak İ, Akkuş G. Kadmiyum Stresi Altındaki Çilek (Fragaria x ananassa “Camarosa”) Bitkisinde Metil Jasmonat Uygulamalarının Bazı Büyüme Parametreleri Üzerine Etkileri. Iğdır Üniv. Fen Bil Enst. Der. 2020;10(2):714-22.