Yıl 2022,
Cilt: 12 Sayı: 2, 527 - 538, 01.06.2022
Tuba Dilmaçünal
,
Berna Bayar
,
Özcan Demirhan
Proje Numarası
TUBITAK 2209-A
Kaynakça
- Abd Allah EF, Hashem A, Al-Huqail A, 2011. Biologically-based strategies to reduce postharvest losses of tomato. African Journal of Biotechnology, 10: 32, 6040-6044. Available online at http://www.academicjournals.org/AJB doi: 10.5897/AJB11.387
Ahmad S, Ahmad Chatha Z, Nasır MA, Aziz A, Mohson M, 2006. Effect of relative humidity on the ripening behaviour and quality of ethylene treated banana fruit. Journal of Agriculture & Social Sciences, 1813–2235, 02: (1): 54–57 http://www.fspublishers.org
- Ahmed L, Martin-Diana AB, Rico D, Barry-Ryan C, 2013. Effect of delactosed whey permeate treatment on physicochemical, sensorial, nutritional and microbial properties of whole tomatoes during postharvest storage, LWT - Food Science and Technology, 51 (1): 367-374.
- Akbudak B, Akbudak N, Seniz V, Eris A, 2007. Sequential treatments of hot water and modified atmosphere packaging in cherry tomatoes. Journal of Food Quality, 30: 896-910.
- Ali A, Maqbool M, Ramachandran S, Alderson PG, 2010. Gum arabic as a novel edible coating for enhancing shelf-life and improving postharvest quality of tomato (Solanum lycopersicum L.) fruit. Postharvest Biology and Technology, 58: 42-47. Available online at: http://doi:10.1016/j.postharvbio.2010.05.005
- Aguiló-Aguayo I, Charles F, Renard CMGC, Page D, Carlin F, 2013. Pulsed light effects on surface decontamination, physical qualities and nutritional composition of tomato fruit. Postharvest Biology and Technology, 86: 29-36. Available online at: http://dx.doi.org/10.1016/j.postharvbio.2013.06.011
- Affandi FY, Verdonk JC, Ouzounis T, Ji Y, Woltering EJ, Schouten RE, 2020. Far-red light during cultivation induces postharvest cold tolerance in tomato fruit. Postharvest Biology and Technology, 159: 111019, pp. 1-10. Available online at: https://doi.org/10.1016/j.postharvbio.2019.111019
- Anonymous, 2021. 'Seval F1' domates çeşidi özellikleri. Available online at: http://www.multitohum.com/tr/m/tane/seval-f1.html
- Ayomide OB, Ajayi OO, Ajayi AA, 2019. Advances in the development of a tomato postharvest storage system: towards eradicating postharvest losses. Journal of Physics: Conference Series, 1378: 1-18. 022064 IOP Publishing, Available online at: https://doi:10.1088/1742-6596/1378/2/022064
- Belović M, Kevrešan Ž, Pestorić M, Mastilović J, 2015. The influence of hot air treatment and UV irradiation on the quality of two tomato varieties after storage. Food Packaging and Shelf Life, 5: 63-37. Available online at: http://dx.doi.org/10.1016/j.fpsl.2015.06.002
- Black-Solis J, Ventura-Aguilar RI, Correa-Pacheco Z, Maria Luisa Corona-Rangel ML, Bautista-Baños S, 2019. Preharvest use of biodegradable polyester nets added with cinnamon essential oil and the effect on the storage life of tomatoes and the development of Alternaria alternata. Scientia Horticulturae, 245: 65-73. Available online at: https://doi.org/10.1016/j.scienta.2018.10.004
- Bruijn J, Gómez A, Loyola C, Melín P, Solar V, Abreu N, Azzolina-Jury F, Valdés H, 2020. Use of a Copper- and Zinc-Modified Natural Zeolite to Improve Ethylene Removal and Postharvest Quality of Tomato Fruit. Crystals, 10: 471, 1-16. Available online at: https://doi:10.3390/cryst10060471
Candir E, Candir A, Sen F, 2017. Effects of aminoethoxyvinylglycine treatment by vacuum infiltration method on postharvest storage and shelf life of tomato fruit. 125, 13-25. Available online at: http://dx.doi.org/10.1016/j.postharvbio.2016.11.004
- Cheema A, Padmanabhan P, Subramanian J, Blom T, Paliyath G, 2014. Improving quality of greenhouse tomato (Solanum lycopersicum L.) by pre- and postharvest applications of hexanal-containing formulations. Postharvest Biology and Technology, 95: 13-19. Available online at: http://dx.doi.org/10.1016/j.postharvbio.2014.03.012
- Choi DS, Park SH, Choi SR, Kim JS, Chun HH, 2015. The combined effects of ultraviolet-C irradiation and modified atmosphere packaging for inactivating Salmonella enterica serovar Typhimurium and extending the shelf life of cherry tomatoes during cold storage. Food Packaging and Shelf Life, 3: 19-30. Available online at: http://dx.doi.org/10.1016/j.fpsl.2014.10.005
- Cozmuta AM, Cozmuta LM, Peter A, Nicula C, Vosgan Z, Giurgiulescu L, Vulpoi A, Baia M, 2016. Effect of monochromatic Far-Red light on physical-nutritional-microbiological attributes of red tomatoes during storage. Scientia Horticulturae, 211: 220-230. Available online at: http://dx.doi.org/10.1016/j.scienta.2016.08.031
- D’Aquino S, Mistriotis A, Briassoulis D, Lorenzo ML, Malinconico M, Palma A, 2016. Influence of modified atmosphere packaging on postharvest quality of cherry tomatoes held at 20°C. Postharvest Biology and Technology, 115: 103-112. Available online at: http://dx.doi.org/10.1016/j.postharvbio.2015.12.014
- Dilmaçünal, T., 2009. Organik ve konvensiyonel tarım koşullarında yetiştirilen bazı elma çeşitlerinin normal ve kontrollü atmosferde depolanması. Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü, Bahçe Bitkileri Anabilim Dalı, Doktora Tezi, s: 188, Isparta.
- Dyshlyuk L, Babich O, Prosekov A, Ivanova S, Pavsky V, Chaplygina T, 2020. The effect of postharvest ultraviolet irradiation on the content of antioxidant compounds and the activity of antioxidant enzymes in tomato. Heliyon, 6: 1-8. Available online at: https://doi.org/10.1016/j.heliyon.2020.e03288
- FAOSTAT, 2021. Food and Agriculture Organization of the United Nations. Tomato production quantity. Available online at: http://www.fao.org/faostat/en/#data/QC
- Fagundes C, Moraes K, Pérez-Gago MB, Palou L, Maraschin M, Monteiro AR, 2015. Effect of active modified atmosphere and cold storage on the postharvest quality of cherry tomatoes. Postharvest Biology and Technology, 109: 73-81. Available online at: http://dx.doi.org/10.1016/j.postharvbio.2015.05.017
- Gonzalez C, Ré MD, Sossi ML, Valle EM, Boggio SB, 2015. Tomato cv. ‘Micro-Tom’ as a model system to study postharvest chilling tolerance. Scientia Horticulturae, 184: 63-69. Available online at: http://dx.doi.org/10.1016/j.scienta.2014.12.020
- Guo X, Chen B, Wu X, Li J, Sun Q, 2020. Utilization of cinnamaldehyde and zinc oxide nanoparticles in a carboxymethylcellulose-based composite coating to improve the postharvest quality of cherry tomatoes. International Journal of Biological Macromolecules, 160: 175-182. Available online at: https://doi.org/10.1016/j.ijbiomac.2020.05.201
- Hernández-Yépez JN, De La Haba MJ, Sánchez MT, 2013. Effect of different prepackaging treatments on the physical/chemical quality of Margariteño tomatoes during postharvest storage at room temperature. Journal of Food Quality, 36: 113-120. doi: 10.1111/jfq.12022
- Karaçalı, İ., 2009. Bahçe Ürünlerinin Muhafaza ve Pazarlanması. Ege Üniversitesi Ziraat Fakültesi Yayınları, No: 494, 6. Baskı, Ege Üniversitesi Basımevi, s: 482, Bornova/İzmir.
- Kyriacou MC, Rouphael Y, 2018. Towards a new definition of quality for fresh fruits and vegetables. Scientia Horticulturae, 234: 463-469. Available online at: http://dx.doi.org/10.1016/j.scienta.2017.09.046
- Liu WY, 2014. Effect of different temperatures and parameters analysis of the storage life of fresh cucumber and tomato using controlled atmosphere technology. American Journal of Food Technology, 9 (2): 117-126. Available online at: https://scialert.net/abstract/?doi=ajft.2014.117.126
- Lufu R, Ambaw A, Opara UL, 2020. Water loss of fresh fruit: Influencing pre-harvest, harvest and postharvest factors. Scientia Horticulturae, 272: 1-16. Available online at: https://doi.org/10.1016/j.scienta.2020.109519
- Majidi H, Minaei S, Almassi M, Mostofi Y, 2014. Tomato quality in controlled atmosphere storage, modified atmosphere packaging and cold storage. Journal of Food Science and Technology, 51 (9): 2155-2161. doi: 10.1007/s13197-012-0721-0
- Mekonnen ZT, 2017. The influence of retailing packaging on tomato quality. Journal of Nutrition & Food Sciences, 7: 604. doi:10.4172/2155-9600.1000604
- Nunes MCN, Morais AMMB, Brecht JK, Sargent SA, 1996. Quality of Pink tomatoes (cv. Buffalo) after storage under controlled atmosphere at chilling and nonchilling temperatures. Journal of Food Quality, 19: 363-374.
- Nunes MCN, 2008. Impact of environmental conditions on fruit and vegetable quality. Stewart Postharvest Solutions (UK) Ltd. Online ISSN: 1945-9656 Available online at: www.stewartpostharvest.com
- Oms-Oliu G, Hertog MLATM, Poel BV, Ampofo-Asiama J, Geeraerd AH, Nicolaï BM, 2011. Metabolic characterization of tomato fruit during preharvest development, ripening, and postharvest shelf-life. Postharvest Biology and Technology, 62: 7-16. Available online at: http://doi:10.1016/j.postharvbio.2011.04.010
- Ozturk, B, Ozer, H, 2019. Effects of grafting and green manure treatments on postharvest quality of tomatoes. Journal of Soil Science and Plant Nutrition, 19 (4), 780-792.
- Pagno CH, Castagna A, Trivellini A, Mensuali-Sodi A, Ranieri A, Ester Alice Ferreira EA, Rios AO, Flôres SH, 2017. The nutraceutical quality of tomato fruit during domestic storage is affected by chitosan coating. Journal of Food Processing and Preservation, 1-9. Available online at: https://doi.org/10.1111/jfpp.13326
- Panjai L, Noga G, Fiebig A, Hunsche M, 2017. Effects of continuous red light and short daily UV exposure during postharvest on carotenoid concentration and antioxidant capacity in stored tomatoes. Scientia Horticulturae, 226: 97-103. Available online at: http://dx.doi.org/10.1016/j.scienta.2017.08.035
- Pathmanaban P, Gnanavel BK, Anandan SS, 2019. Recent application of imaging techniques for fruit quality assessment. Trends in Food Science & Technology, 94: 32-42. Available online at: https://doi.org/10.1016/j.tifs.2019.10.004
- Pristijono P, Wills RBH, Tesoriero L, Golding JB, 2018. Effect of continuous exposure to low levels of ethylene on mycelial growth of postharvest fruit fungal pathogens. Horticulturae, 4, 20. doi: 10.3390/horticulturae4030020 Available online at: http://www.mdpi.com/journal/horticulturae
- Rees D, Hipps N, Colgan R, Thurston K, 2011. Ethylene and microbial hotspots in the fresh produce supply chain. Final report, Wrap, Material change for a better environment. Project code: RBC820-002. Available online at: http://www.wrap.org.uk/
- Steelheart, C, Matías ML, Bahima, JV, Senn, ME, Simontacchi, M, Bartoli, CG, Grozef, GEG, 2019. Nitric oxide improves the effect of 1-methylcyclopropene extending the tomato (Lycopersicum esculentum L.) fruit postharvest life. 255, 193-201. Available online at: https://doi.org/10.1016/j.scienta.2019.04.035
- Şen, F., Uğur, A. Bozokalfa, MK, Eşiyok, D., Boztok, K., 2004. Bazı Sera Domates Çeşitlerinin Verim Kalite ve Depolama Özelliklerinin Belirlenmesi. Ege Üniversitesi Ziraat Fakültesi Dergisi, 41 (2): 9-17. Available online at: https://dergipark.org.tr/tr/pub/zfdergi/issue/5079/69368
- Taye AM, Tilahun S, Park DS, Seo MH, Jeong CH, 2017. Effects of continuous application of CO2 on fruit quality attributes and shelf life during cold storage in cherry tomato. Horticultural Science and Technology, 35 (3): 300-313, Available online at: http://www.kjhst.org
- Teka TA, 2013. Analysis of the effect of maturity stage on the postharvest biochemical quality characteristics of tomato (Lycopersicon esculentum Mill.) fruit. International Research Journal of Pharmaceutical and Applied Sciences, 3 (5): 180-186. Available online at: www.irjpas.com
- Thole V, Vain P, Yang RY, Almeida Barros da Silva J, Enfissi EMA, Nogueira M, Price EJ, Alseekh S, Fernie AR, Fraser PD, Hanson P, Martin C, 2020. Analysis of tomato post-harvest properties: Fruit color, shelf life, and fungal susceptibility. Current Protocols in Plant Biology, 5, e20108. doi: 10.1002/cppb.20108
- Zhang X, Zhang X, Liu X, Du M, Tian Y, 2019. Effect of polysaccharide derived from Osmunda japonica Thunb‐incorporated carboxymethyl cellulose coatings on preservation of tomatoes. Journal of Food Processing and Preservation, 1-8. Available online at: https://doi.org/10.1111/jfpp.14239
Impact of Modified Atmosphere Packaging and Controlled Atmosphere Applications on ‘Seval F1’ Tomato Fruit Quality and Marketability
Yıl 2022,
Cilt: 12 Sayı: 2, 527 - 538, 01.06.2022
Tuba Dilmaçünal
,
Berna Bayar
,
Özcan Demirhan
Öz
This study was carried out at the Postharvest Physiology Laboratory of the Department of Horticulture of Isparta University of Applied Sciences with the ‘Seval F1’ table tomato variety. Tomato fruits are stored in normal atmospheric storage (NA), modified atmosphere packages (MAPs) (MAP1 and MAP2) and in controlled atmosphere (CA) cabinets (5% O2+5% CO2) at 12±1°C temperature and 90% ± 5 relative humidity (RH) conditions. After removing the fruits from cold storage at each analysis period they were kept at room conditions for 2 days for shelf life evaluation. Weight loss, peel color, fruit firmness, soluble solids content, pH, titratable acidity, respiration rate (RR), ethylene production (EP), MAPs’ gas composition and sensorial analyzes were carried out for fruits taken randomly from cold storage and subsequent 2 days in shelf life conditions. According to the mean values, CA and MAPs maintained fruit firmness better than NA. The lowest RR (11.3 mLCO2 kg -1 h -1) was recorded in NA followed by MAP1 (13.2 mLCO2 kg -1 h -1). EP values of NA and CA were closer to each other’s and lower than those of the others (2.7 and 2.8 µL.kg-1h-1, respectively). CA had the highest taste-aroma value at 25+2 days of storage, followed by MAP1 and NA. The highest O2 (18.98 %) and the lowest CO2 (2.90 %) values were recorded in MAP1. In conclusion, CA and MAP1 storage conditions successfully extended the postharvest life of ‘Seval F1’ tomato fruits and maintained their marketable quality for 25+2 days.
Destekleyen Kurum
TUBİTAK
Proje Numarası
TUBITAK 2209-A
Teşekkür
This study was supported by TUBITAK Scientific Student Research Projects Unit with the project code of "TUBITAK 2209-A".
Kaynakça
- Abd Allah EF, Hashem A, Al-Huqail A, 2011. Biologically-based strategies to reduce postharvest losses of tomato. African Journal of Biotechnology, 10: 32, 6040-6044. Available online at http://www.academicjournals.org/AJB doi: 10.5897/AJB11.387
Ahmad S, Ahmad Chatha Z, Nasır MA, Aziz A, Mohson M, 2006. Effect of relative humidity on the ripening behaviour and quality of ethylene treated banana fruit. Journal of Agriculture & Social Sciences, 1813–2235, 02: (1): 54–57 http://www.fspublishers.org
- Ahmed L, Martin-Diana AB, Rico D, Barry-Ryan C, 2013. Effect of delactosed whey permeate treatment on physicochemical, sensorial, nutritional and microbial properties of whole tomatoes during postharvest storage, LWT - Food Science and Technology, 51 (1): 367-374.
- Akbudak B, Akbudak N, Seniz V, Eris A, 2007. Sequential treatments of hot water and modified atmosphere packaging in cherry tomatoes. Journal of Food Quality, 30: 896-910.
- Ali A, Maqbool M, Ramachandran S, Alderson PG, 2010. Gum arabic as a novel edible coating for enhancing shelf-life and improving postharvest quality of tomato (Solanum lycopersicum L.) fruit. Postharvest Biology and Technology, 58: 42-47. Available online at: http://doi:10.1016/j.postharvbio.2010.05.005
- Aguiló-Aguayo I, Charles F, Renard CMGC, Page D, Carlin F, 2013. Pulsed light effects on surface decontamination, physical qualities and nutritional composition of tomato fruit. Postharvest Biology and Technology, 86: 29-36. Available online at: http://dx.doi.org/10.1016/j.postharvbio.2013.06.011
- Affandi FY, Verdonk JC, Ouzounis T, Ji Y, Woltering EJ, Schouten RE, 2020. Far-red light during cultivation induces postharvest cold tolerance in tomato fruit. Postharvest Biology and Technology, 159: 111019, pp. 1-10. Available online at: https://doi.org/10.1016/j.postharvbio.2019.111019
- Anonymous, 2021. 'Seval F1' domates çeşidi özellikleri. Available online at: http://www.multitohum.com/tr/m/tane/seval-f1.html
- Ayomide OB, Ajayi OO, Ajayi AA, 2019. Advances in the development of a tomato postharvest storage system: towards eradicating postharvest losses. Journal of Physics: Conference Series, 1378: 1-18. 022064 IOP Publishing, Available online at: https://doi:10.1088/1742-6596/1378/2/022064
- Belović M, Kevrešan Ž, Pestorić M, Mastilović J, 2015. The influence of hot air treatment and UV irradiation on the quality of two tomato varieties after storage. Food Packaging and Shelf Life, 5: 63-37. Available online at: http://dx.doi.org/10.1016/j.fpsl.2015.06.002
- Black-Solis J, Ventura-Aguilar RI, Correa-Pacheco Z, Maria Luisa Corona-Rangel ML, Bautista-Baños S, 2019. Preharvest use of biodegradable polyester nets added with cinnamon essential oil and the effect on the storage life of tomatoes and the development of Alternaria alternata. Scientia Horticulturae, 245: 65-73. Available online at: https://doi.org/10.1016/j.scienta.2018.10.004
- Bruijn J, Gómez A, Loyola C, Melín P, Solar V, Abreu N, Azzolina-Jury F, Valdés H, 2020. Use of a Copper- and Zinc-Modified Natural Zeolite to Improve Ethylene Removal and Postharvest Quality of Tomato Fruit. Crystals, 10: 471, 1-16. Available online at: https://doi:10.3390/cryst10060471
Candir E, Candir A, Sen F, 2017. Effects of aminoethoxyvinylglycine treatment by vacuum infiltration method on postharvest storage and shelf life of tomato fruit. 125, 13-25. Available online at: http://dx.doi.org/10.1016/j.postharvbio.2016.11.004
- Cheema A, Padmanabhan P, Subramanian J, Blom T, Paliyath G, 2014. Improving quality of greenhouse tomato (Solanum lycopersicum L.) by pre- and postharvest applications of hexanal-containing formulations. Postharvest Biology and Technology, 95: 13-19. Available online at: http://dx.doi.org/10.1016/j.postharvbio.2014.03.012
- Choi DS, Park SH, Choi SR, Kim JS, Chun HH, 2015. The combined effects of ultraviolet-C irradiation and modified atmosphere packaging for inactivating Salmonella enterica serovar Typhimurium and extending the shelf life of cherry tomatoes during cold storage. Food Packaging and Shelf Life, 3: 19-30. Available online at: http://dx.doi.org/10.1016/j.fpsl.2014.10.005
- Cozmuta AM, Cozmuta LM, Peter A, Nicula C, Vosgan Z, Giurgiulescu L, Vulpoi A, Baia M, 2016. Effect of monochromatic Far-Red light on physical-nutritional-microbiological attributes of red tomatoes during storage. Scientia Horticulturae, 211: 220-230. Available online at: http://dx.doi.org/10.1016/j.scienta.2016.08.031
- D’Aquino S, Mistriotis A, Briassoulis D, Lorenzo ML, Malinconico M, Palma A, 2016. Influence of modified atmosphere packaging on postharvest quality of cherry tomatoes held at 20°C. Postharvest Biology and Technology, 115: 103-112. Available online at: http://dx.doi.org/10.1016/j.postharvbio.2015.12.014
- Dilmaçünal, T., 2009. Organik ve konvensiyonel tarım koşullarında yetiştirilen bazı elma çeşitlerinin normal ve kontrollü atmosferde depolanması. Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü, Bahçe Bitkileri Anabilim Dalı, Doktora Tezi, s: 188, Isparta.
- Dyshlyuk L, Babich O, Prosekov A, Ivanova S, Pavsky V, Chaplygina T, 2020. The effect of postharvest ultraviolet irradiation on the content of antioxidant compounds and the activity of antioxidant enzymes in tomato. Heliyon, 6: 1-8. Available online at: https://doi.org/10.1016/j.heliyon.2020.e03288
- FAOSTAT, 2021. Food and Agriculture Organization of the United Nations. Tomato production quantity. Available online at: http://www.fao.org/faostat/en/#data/QC
- Fagundes C, Moraes K, Pérez-Gago MB, Palou L, Maraschin M, Monteiro AR, 2015. Effect of active modified atmosphere and cold storage on the postharvest quality of cherry tomatoes. Postharvest Biology and Technology, 109: 73-81. Available online at: http://dx.doi.org/10.1016/j.postharvbio.2015.05.017
- Gonzalez C, Ré MD, Sossi ML, Valle EM, Boggio SB, 2015. Tomato cv. ‘Micro-Tom’ as a model system to study postharvest chilling tolerance. Scientia Horticulturae, 184: 63-69. Available online at: http://dx.doi.org/10.1016/j.scienta.2014.12.020
- Guo X, Chen B, Wu X, Li J, Sun Q, 2020. Utilization of cinnamaldehyde and zinc oxide nanoparticles in a carboxymethylcellulose-based composite coating to improve the postharvest quality of cherry tomatoes. International Journal of Biological Macromolecules, 160: 175-182. Available online at: https://doi.org/10.1016/j.ijbiomac.2020.05.201
- Hernández-Yépez JN, De La Haba MJ, Sánchez MT, 2013. Effect of different prepackaging treatments on the physical/chemical quality of Margariteño tomatoes during postharvest storage at room temperature. Journal of Food Quality, 36: 113-120. doi: 10.1111/jfq.12022
- Karaçalı, İ., 2009. Bahçe Ürünlerinin Muhafaza ve Pazarlanması. Ege Üniversitesi Ziraat Fakültesi Yayınları, No: 494, 6. Baskı, Ege Üniversitesi Basımevi, s: 482, Bornova/İzmir.
- Kyriacou MC, Rouphael Y, 2018. Towards a new definition of quality for fresh fruits and vegetables. Scientia Horticulturae, 234: 463-469. Available online at: http://dx.doi.org/10.1016/j.scienta.2017.09.046
- Liu WY, 2014. Effect of different temperatures and parameters analysis of the storage life of fresh cucumber and tomato using controlled atmosphere technology. American Journal of Food Technology, 9 (2): 117-126. Available online at: https://scialert.net/abstract/?doi=ajft.2014.117.126
- Lufu R, Ambaw A, Opara UL, 2020. Water loss of fresh fruit: Influencing pre-harvest, harvest and postharvest factors. Scientia Horticulturae, 272: 1-16. Available online at: https://doi.org/10.1016/j.scienta.2020.109519
- Majidi H, Minaei S, Almassi M, Mostofi Y, 2014. Tomato quality in controlled atmosphere storage, modified atmosphere packaging and cold storage. Journal of Food Science and Technology, 51 (9): 2155-2161. doi: 10.1007/s13197-012-0721-0
- Mekonnen ZT, 2017. The influence of retailing packaging on tomato quality. Journal of Nutrition & Food Sciences, 7: 604. doi:10.4172/2155-9600.1000604
- Nunes MCN, Morais AMMB, Brecht JK, Sargent SA, 1996. Quality of Pink tomatoes (cv. Buffalo) after storage under controlled atmosphere at chilling and nonchilling temperatures. Journal of Food Quality, 19: 363-374.
- Nunes MCN, 2008. Impact of environmental conditions on fruit and vegetable quality. Stewart Postharvest Solutions (UK) Ltd. Online ISSN: 1945-9656 Available online at: www.stewartpostharvest.com
- Oms-Oliu G, Hertog MLATM, Poel BV, Ampofo-Asiama J, Geeraerd AH, Nicolaï BM, 2011. Metabolic characterization of tomato fruit during preharvest development, ripening, and postharvest shelf-life. Postharvest Biology and Technology, 62: 7-16. Available online at: http://doi:10.1016/j.postharvbio.2011.04.010
- Ozturk, B, Ozer, H, 2019. Effects of grafting and green manure treatments on postharvest quality of tomatoes. Journal of Soil Science and Plant Nutrition, 19 (4), 780-792.
- Pagno CH, Castagna A, Trivellini A, Mensuali-Sodi A, Ranieri A, Ester Alice Ferreira EA, Rios AO, Flôres SH, 2017. The nutraceutical quality of tomato fruit during domestic storage is affected by chitosan coating. Journal of Food Processing and Preservation, 1-9. Available online at: https://doi.org/10.1111/jfpp.13326
- Panjai L, Noga G, Fiebig A, Hunsche M, 2017. Effects of continuous red light and short daily UV exposure during postharvest on carotenoid concentration and antioxidant capacity in stored tomatoes. Scientia Horticulturae, 226: 97-103. Available online at: http://dx.doi.org/10.1016/j.scienta.2017.08.035
- Pathmanaban P, Gnanavel BK, Anandan SS, 2019. Recent application of imaging techniques for fruit quality assessment. Trends in Food Science & Technology, 94: 32-42. Available online at: https://doi.org/10.1016/j.tifs.2019.10.004
- Pristijono P, Wills RBH, Tesoriero L, Golding JB, 2018. Effect of continuous exposure to low levels of ethylene on mycelial growth of postharvest fruit fungal pathogens. Horticulturae, 4, 20. doi: 10.3390/horticulturae4030020 Available online at: http://www.mdpi.com/journal/horticulturae
- Rees D, Hipps N, Colgan R, Thurston K, 2011. Ethylene and microbial hotspots in the fresh produce supply chain. Final report, Wrap, Material change for a better environment. Project code: RBC820-002. Available online at: http://www.wrap.org.uk/
- Steelheart, C, Matías ML, Bahima, JV, Senn, ME, Simontacchi, M, Bartoli, CG, Grozef, GEG, 2019. Nitric oxide improves the effect of 1-methylcyclopropene extending the tomato (Lycopersicum esculentum L.) fruit postharvest life. 255, 193-201. Available online at: https://doi.org/10.1016/j.scienta.2019.04.035
- Şen, F., Uğur, A. Bozokalfa, MK, Eşiyok, D., Boztok, K., 2004. Bazı Sera Domates Çeşitlerinin Verim Kalite ve Depolama Özelliklerinin Belirlenmesi. Ege Üniversitesi Ziraat Fakültesi Dergisi, 41 (2): 9-17. Available online at: https://dergipark.org.tr/tr/pub/zfdergi/issue/5079/69368
- Taye AM, Tilahun S, Park DS, Seo MH, Jeong CH, 2017. Effects of continuous application of CO2 on fruit quality attributes and shelf life during cold storage in cherry tomato. Horticultural Science and Technology, 35 (3): 300-313, Available online at: http://www.kjhst.org
- Teka TA, 2013. Analysis of the effect of maturity stage on the postharvest biochemical quality characteristics of tomato (Lycopersicon esculentum Mill.) fruit. International Research Journal of Pharmaceutical and Applied Sciences, 3 (5): 180-186. Available online at: www.irjpas.com
- Thole V, Vain P, Yang RY, Almeida Barros da Silva J, Enfissi EMA, Nogueira M, Price EJ, Alseekh S, Fernie AR, Fraser PD, Hanson P, Martin C, 2020. Analysis of tomato post-harvest properties: Fruit color, shelf life, and fungal susceptibility. Current Protocols in Plant Biology, 5, e20108. doi: 10.1002/cppb.20108
- Zhang X, Zhang X, Liu X, Du M, Tian Y, 2019. Effect of polysaccharide derived from Osmunda japonica Thunb‐incorporated carboxymethyl cellulose coatings on preservation of tomatoes. Journal of Food Processing and Preservation, 1-8. Available online at: https://doi.org/10.1111/jfpp.14239