Araştırma Makalesi
BibTex RIS Kaynak Göster

Dual Uzayda N-Bishop Çatısına Göre Smarandache Eğrileri ve Karşılık Geldiği Regle Yüzeyleri

Yıl 2022, Cilt: 12 Sayı: 2, 1003 - 1016, 01.06.2022
https://doi.org/10.21597/jist.995975

Öz

Dual uzayda dual birim küre üzerinde seçilen dual Smarandache eğrisi Öklid-3 uzayındaki yönlü doğruların oluşturmuş olduğu regle yüzeye karşılık gelir. Bu çalışmada dual N-Bishop çatısının dual bileşenlerinin yardımıyla oluşturulan dual Smarandache eğrilerine karşılık gelen regle yüzeylerine ait bazı karakterizasyonlar incelenmiştir.

Kaynakça

  • Abdel Baky RA, 2002. An Explicit Characterization of Dual Spherical Curve. Commun. Fac. Sci. Univ. Ank. Series Al, 51(2):1–9.
  • Bektaş Ö, Yüce S, 2013. Special Smarandache Curves According to Darboux Frame in E3, Rom. J. Math. Comput. Sci. 3: 48–59.
  • Bishop RL, 1975. There is More than One Way to Frame a Curve. The American Mathematical Monthly, 82(3): 246-251.
  • Bükcü B, Karacan MK, 2008. Bishop Frame of the Spacelike Curve with a Spacelike Principal Normal in Minkowski 3-Space, Communications Faculte Science University Ankara Series A1 Mathematics Statistics, 57(1): 13-22.
  • Bükcü B, Karacan MK, 2009. The Slant Helices According to Bishop Frame, International J. of Computational and Mathematical Sciences, 3(2): 67-70.
  • Bükcü B, Karacan MK, 2010. Bishop Frame of the Spacelike Curve with a Spacelike Binormal in Minkowski 3-Space, Selçuk J. of Applied Mathematics, 11(1): 15-25.
  • Clifford WK, 1873. Preliminary Sketch of Biquaternions. Proceedings of the London Mathematical Society, 4: 361–395.
  • Çalışkan A, Şenyurt, S. 2020. Curves and Ruled Surfaces According to Alternative Frame in Dual Space. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 69(1): 684–698.
  • Gürses NB, Bektaş O, Yüce S, 2016. Special Smarandache Curves in R31. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 65(2): 143–160.
  • Hacısalihoğlu HH, 1983. Hareket Geometrisi ve Kuaterniyonlar Teorisi. Gazi Üniversitesi Fen Edb. Fakültesi. Ankara.
  • Hacısalihoğlu HH, 1983. Diferensiyel Geometri. İnönü Üniversitesi Yayınları. Malatya.
  • Izumiya S, Takeuchi N, 2004. New Special Curves and Developable Surfaces, Turkish Journal of Mathematics, 28(2), 153-164. Kahraman T, Uğurlu HH, 2014. Dual Smarandache Curves and Smarandache Ruled Surfaces. Mathematical Sciences and Applications E-Notes, 2(1).
  • Keskin O, Yaylı Y, 2017. An Application of N-Bishop Frame to Spherical Images for Direction Curves, International Journal of Geometric Methods in Modern Physics, 14(11), 1750162.
  • Samancı HK, Kocayiğit H, 2019. N-Bishop Darboux Vector of the Spacelike Curve with Spacelike Binormal, Thermal Science, 23(1), 353-360.
  • Scofield PD, 1995. Curves of Constant Precession. The American Mathematical Monthly, 102(6): 531-537. Uzunoğlu B, Gök İ, Yaylı Y, 2016. A New Approach on Curves of Constant Precession, Applied Mathematics and Computation, 275: 317-323.
  • Yaylı Y, Saracoğlu S, 2011. Some Notes on Dual Spherical Curves. Journal of Informatics and Mathematical Sciences, 3(2): 177–189.
  • Yılmaz S, Turgut MA, 2010. New Version of Bishop Frame and an Application to Spherical Images, Journal of Mathematical Analysis and Applications, 371(2):764–776.

The Smarandache Curves and Corresponding to Ruled Surfaces Due to N-Bishop Frame In Dual Space

Yıl 2022, Cilt: 12 Sayı: 2, 1003 - 1016, 01.06.2022
https://doi.org/10.21597/jist.995975

Öz

The dual Smarandache curve selected on the dual unit sphere in dual space corresponds to the ruled surface formed by the directional lines in the Euclidean-3 space. In this study, some characterizations of ruled surfaces corresponding to dual Smarandache curves created with the help of dual components of the dual N-Bishop frame were investigated.

Kaynakça

  • Abdel Baky RA, 2002. An Explicit Characterization of Dual Spherical Curve. Commun. Fac. Sci. Univ. Ank. Series Al, 51(2):1–9.
  • Bektaş Ö, Yüce S, 2013. Special Smarandache Curves According to Darboux Frame in E3, Rom. J. Math. Comput. Sci. 3: 48–59.
  • Bishop RL, 1975. There is More than One Way to Frame a Curve. The American Mathematical Monthly, 82(3): 246-251.
  • Bükcü B, Karacan MK, 2008. Bishop Frame of the Spacelike Curve with a Spacelike Principal Normal in Minkowski 3-Space, Communications Faculte Science University Ankara Series A1 Mathematics Statistics, 57(1): 13-22.
  • Bükcü B, Karacan MK, 2009. The Slant Helices According to Bishop Frame, International J. of Computational and Mathematical Sciences, 3(2): 67-70.
  • Bükcü B, Karacan MK, 2010. Bishop Frame of the Spacelike Curve with a Spacelike Binormal in Minkowski 3-Space, Selçuk J. of Applied Mathematics, 11(1): 15-25.
  • Clifford WK, 1873. Preliminary Sketch of Biquaternions. Proceedings of the London Mathematical Society, 4: 361–395.
  • Çalışkan A, Şenyurt, S. 2020. Curves and Ruled Surfaces According to Alternative Frame in Dual Space. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 69(1): 684–698.
  • Gürses NB, Bektaş O, Yüce S, 2016. Special Smarandache Curves in R31. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 65(2): 143–160.
  • Hacısalihoğlu HH, 1983. Hareket Geometrisi ve Kuaterniyonlar Teorisi. Gazi Üniversitesi Fen Edb. Fakültesi. Ankara.
  • Hacısalihoğlu HH, 1983. Diferensiyel Geometri. İnönü Üniversitesi Yayınları. Malatya.
  • Izumiya S, Takeuchi N, 2004. New Special Curves and Developable Surfaces, Turkish Journal of Mathematics, 28(2), 153-164. Kahraman T, Uğurlu HH, 2014. Dual Smarandache Curves and Smarandache Ruled Surfaces. Mathematical Sciences and Applications E-Notes, 2(1).
  • Keskin O, Yaylı Y, 2017. An Application of N-Bishop Frame to Spherical Images for Direction Curves, International Journal of Geometric Methods in Modern Physics, 14(11), 1750162.
  • Samancı HK, Kocayiğit H, 2019. N-Bishop Darboux Vector of the Spacelike Curve with Spacelike Binormal, Thermal Science, 23(1), 353-360.
  • Scofield PD, 1995. Curves of Constant Precession. The American Mathematical Monthly, 102(6): 531-537. Uzunoğlu B, Gök İ, Yaylı Y, 2016. A New Approach on Curves of Constant Precession, Applied Mathematics and Computation, 275: 317-323.
  • Yaylı Y, Saracoğlu S, 2011. Some Notes on Dual Spherical Curves. Journal of Informatics and Mathematical Sciences, 3(2): 177–189.
  • Yılmaz S, Turgut MA, 2010. New Version of Bishop Frame and an Application to Spherical Images, Journal of Mathematical Analysis and Applications, 371(2):764–776.
Toplam 17 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Matematik
Bölüm Matematik / Mathematics
Yazarlar

Hatice Kusak Samancı 0000-0001-6685-236X

Veysi Cengiz 0000-0001-7843-6793

Erken Görünüm Tarihi 31 Mayıs 2022
Yayımlanma Tarihi 1 Haziran 2022
Gönderilme Tarihi 15 Eylül 2021
Kabul Tarihi 25 Ocak 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 12 Sayı: 2

Kaynak Göster

APA Kusak Samancı, H., & Cengiz, V. (2022). Dual Uzayda N-Bishop Çatısına Göre Smarandache Eğrileri ve Karşılık Geldiği Regle Yüzeyleri. Journal of the Institute of Science and Technology, 12(2), 1003-1016. https://doi.org/10.21597/jist.995975
AMA Kusak Samancı H, Cengiz V. Dual Uzayda N-Bishop Çatısına Göre Smarandache Eğrileri ve Karşılık Geldiği Regle Yüzeyleri. Iğdır Üniv. Fen Bil Enst. Der. Haziran 2022;12(2):1003-1016. doi:10.21597/jist.995975
Chicago Kusak Samancı, Hatice, ve Veysi Cengiz. “Dual Uzayda N-Bishop Çatısına Göre Smarandache Eğrileri Ve Karşılık Geldiği Regle Yüzeyleri”. Journal of the Institute of Science and Technology 12, sy. 2 (Haziran 2022): 1003-16. https://doi.org/10.21597/jist.995975.
EndNote Kusak Samancı H, Cengiz V (01 Haziran 2022) Dual Uzayda N-Bishop Çatısına Göre Smarandache Eğrileri ve Karşılık Geldiği Regle Yüzeyleri. Journal of the Institute of Science and Technology 12 2 1003–1016.
IEEE H. Kusak Samancı ve V. Cengiz, “Dual Uzayda N-Bishop Çatısına Göre Smarandache Eğrileri ve Karşılık Geldiği Regle Yüzeyleri”, Iğdır Üniv. Fen Bil Enst. Der., c. 12, sy. 2, ss. 1003–1016, 2022, doi: 10.21597/jist.995975.
ISNAD Kusak Samancı, Hatice - Cengiz, Veysi. “Dual Uzayda N-Bishop Çatısına Göre Smarandache Eğrileri Ve Karşılık Geldiği Regle Yüzeyleri”. Journal of the Institute of Science and Technology 12/2 (Haziran 2022), 1003-1016. https://doi.org/10.21597/jist.995975.
JAMA Kusak Samancı H, Cengiz V. Dual Uzayda N-Bishop Çatısına Göre Smarandache Eğrileri ve Karşılık Geldiği Regle Yüzeyleri. Iğdır Üniv. Fen Bil Enst. Der. 2022;12:1003–1016.
MLA Kusak Samancı, Hatice ve Veysi Cengiz. “Dual Uzayda N-Bishop Çatısına Göre Smarandache Eğrileri Ve Karşılık Geldiği Regle Yüzeyleri”. Journal of the Institute of Science and Technology, c. 12, sy. 2, 2022, ss. 1003-16, doi:10.21597/jist.995975.
Vancouver Kusak Samancı H, Cengiz V. Dual Uzayda N-Bishop Çatısına Göre Smarandache Eğrileri ve Karşılık Geldiği Regle Yüzeyleri. Iğdır Üniv. Fen Bil Enst. Der. 2022;12(2):1003-16.