Araştırma Makalesi
BibTex RIS Kaynak Göster

Electrical Characterization of n-type doped metal oxide/p-type Si Photosensitive Heterojunction

Yıl 2022, Cilt: 12 Sayı: 3, 1506 - 1517, 01.09.2022
https://doi.org/10.21597/jist.1101786

Öz

The n-type 1.5% Ge doped WOx thin film was deposited on Al/p-type Si wafer using the Physical Vapour Deposition (PVD) technique and Al/Si/WOx(%1.5Ge) p-n junction was fabricated. The surface properties of the thin film layer were examined by scanning electron microscopy (SEM) and it was generally observed that the layer had a smooth structure with various size particles grown on surface. In addition, the elemental composition of the thin film was examined by Energy dispersive X-ray spectroscopy (EDS), and it was observed that all detected elements showed a homogeneous distribution at the rates of 96.4% W, 1.5% Ge and 2.2% O. In order to examine the electrical properties of the fabricated heterojunction, Ag rectifier contacts were grown on the active layer surface by the PVD method. As a result, I-V measurements of Al/p-Si/WOx(1.5%Ge)/Ag heterojunction was performed under dark and various light intensities in the potential range of ±4V. Thus, diode parameters such as series resistance, diode ideality
factor, barrier height and reverse saturation current were determined by using different methods. It is observed that the series resistance is between 70-10Ω, the diode ideality factor is between 14.1 and 3.9, the barrier height is between 0.54-0.15eV and the reverse saturation current is between 1.34x10-4 A-1.1x10-3 A. The series resistance of the fabricated diode decreased with the increase of the light intensity, and the diode approached the ideal. In addition, the ten times increase in reverse saturation current with light intensity indicates that the fabricated heterojunction exhibits typical photodiode behaviour.

Kaynakça

  • Al-Hazmi FE, Yakuphanoglu F, 2018. Photoconducting and photovoltaic properties of ZnO: TiO2 composite/p-silicon heterojunction photodiode. Silicon, 10(3):781-787.
  • Al-Ta’ii HMJ, Periasamy V, Amin YM, 2016. Electronic Characterization of Au/DNA/ITO Metal- Semiconductor-Metal Diode and Its Application as a Radiation Sensor. PLOS ONE, 11(1):e0145423.
  • Aldemir DA, Kökce A, Özdemir AF, 2017. Schottky diyot parametrelerini belirlemede kullanılan metotların geniş bir sıcaklık aralığı için kıyaslanması. SAÜ Fen Bilimleri Enstitüsü Dergisi, 1-1.
  • Altındal Ş, Sevgili Ö, Azizian-Kalandaragh Y, 2019. A comparison of electrical parameters of Au/n-Si and Au/(CoSO4–PVP)/n-Si structures (SBDs) to determine the effect of (CoSO4–PVP) organic interlayer at room temperature. Journal of Materials Science: Materials in Electronics, 30(10):9273-9280.
  • Aslan N, Kurt MŞ, Koç MM, 2022. Morpho-structural and optoelectronic properties of diamond like carbon–germanium (DLC-Ge) composite thin films produced by magnetron sputtering. Optical Materials, 126: 112229.
  • Berglund CN 1966. Surface states at steam-grown silicon-silicon dioxide interfaces. IEEE Transactions on Electron Devices, 13:701-705.
  • Cavalcoli D, Impellizzeri G, Romano L, Miritello M, Grimaldi MG, Fraboni B, 2015. Optical properties of nanoporous germanium thin films. ACS applied materials & interfaces, 7(31):16992-16998.
  • Çetinkaya HG, Tecimer H, Uslu H, Altındal Ş, 2013. Photovoltaic characteristics of Au/PVA (Bi- doped)/n-Si Schottky barrier diodes (SBDs) at various temperatures. Current Applied Physics, 13(6):1150-1156.
  • Chakhalia J, Liu X, Fiete GA, 2020. Strongly correlated and topological states in [111] grown transition metal oxide thin films and heterostructures. Applied Materials, 8(5):050904.
  • Cheung SK, Cheung NW, 1986. Extraction of Schottky diode parameters from forward current‐voltage characteristics. Applied Physics Letters, 49(2):85-87.
  • Cong S, Geng F, Zhao Z, 2016. Tungsten oxide materials for optoelectronic applications. Advanced materials, 28(47):10518-10528.
  • Farag A, 2009. Structure and transport mechanisms of Si/porous Si n–p junctions prepared by liquid phase epitaxy. Applied Surface Science, 255(6):3493-3498.
  • Firat YE, 2020. Elektrodepozisyon Yöntemiyle Bakır Katkılı Tungsten Oksit (Cu: WO3) İnce Filmlerinin Üretilmesi Ve Karakterizasyonu. Journal of the Institute of Science and Technology, 10(1): 234-241.
  • Gündüz B, Turan N, Kaya E, Çolak N, 2013. The photo-electrical properties of the p-Si/Fe(II)–polymeric complex/Au diode. Synthetic Metals, 184:73-82.
  • Gunduz B, Yahia IS, Yakuphanoglu F, 2012. Electrical and photoconductivity properties of p- Si/P3HT/Al and p-Si/P3HT:MEH-PPV/Al organic devices: Comparison study. Microelectronic Engineering, 98:41-57.
  • Hai Z, Wei Z, Xue C, Xu H, Verpoort F, 2019. Nanostructured tungsten oxide thin film devices: From optoelectronics and ionics to iontronics. Journal of Materials Chemistry C, 7(42):12968-12990.
  • Inamdar SI, Ganbavle VV, Rajpure KY, 2014. ZnO based visible–blind UV photodetector by spray pyrolysis. Superlattices and Microstructures, 76:253-263.
  • Jazmati AK, Abdallah B, 2018. Optical and structural study of ZnO thin films deposited by RF magnetron sputtering at different thicknesses: a comparison with single crystal. Materials Research, 21(3): e20170821.
  • Ji H, Zeng W, Li Y, 2019. Gas sensing mechanisms of metal oxide semiconductors: a focus review. Nanoscale, 11(47):22664-22684.
  • Kalanur SS, Seo H, 2019. Aligned nanotriangles of tantalum doped tungsten oxide for improved photoelectrochemical water splitting. Journal of Alloys and Compounds, 785:1097-1105.
  • Kampen TU, Park S, Zahn DRT, 2002. Barrier height engineering of Ag/GaAs(100) Schottky contacts by a thin organic interlayer. Applied Surface Science, 190(1):461-466.
  • Karabat MF, Arsel İ, 2015. Al/CuO/p-Si/Al Diyot Yapısının Elektriksel Özellikleri. Batman Üniversitesi Yaşam Bilimleri Dergisi, 5(1):40-53.
  • Krammer A, Magrez A, Vitale WA, Mocny P, Jeanneret P, Guibert E, Whitlow HJ, Ionescu AM, Schüler A, 2017. Elevated transition temperature in Ge doped VO2 thin films. Journal of Applied Physics, 122(4):045304.
  • Kulkarni S, Mane A, Navale S, Kulkarni P, Mulik R, Patil V, 2015. Synthesis, structural, compositional, morphological and optoelectronic properties of tungsten oxide thin films. Journal of Materials Science: Materials in Electronics, 26(2):1087-1096.
  • Kurt MŞ, Arslan ME, Yazici A, Mudu İ, Arslan E, 2021. Tribological, biocompatibility, and antibiofilm properties of tungsten–germanium coating using magnetron sputtering. Journal of Materials Science: Materials in Medicine, 32(1):1-12.
  • Lapa HE, Kökce A, Aldemir DA, Özdemir AF, Altındal Ş, 2020. Effect of illumination on electrical parameters of Au/(P3DMTFT)/n-GaAs Schottky barrier diodes. Indian Journal of Physics, 94(12):1901-1908.
  • Lee SM, Park SJ, Lee KH, Park JS, Park S, Yi Y, Kang SJ, 2015. Enhanced photocurrent of Ge- doped InGaO thin film transistors with quantum dots. Applied Physics Letters, 106(3):031112.
  • Lee YS, Gershon T, Gunawan O, Todorov TK, Gokmen T, Virgus Y, Guha S, 2015. Cu2ZnSnSe4 thin‐film solar cells by thermal co‐evaporation with 11.6% efficiency and improved minority carrier diffusion length. Advanced Energy Materials, 5(7):1401372.
  • Li G, Kim TW, Inoue S, Okamoto K, Fujioka H, 2006. Epitaxial growth of single-crystalline AlN films on tungsten substrates. Applied Physics Letters, 89(24): 241905.
  • Lu HH, Xu JP, Liu L, 2016. Using Ge-doped La-Oxynitride as interfacial passivation layer for GaAs metal-oxide-semiconductor capacitors. IEEE Transactions on Device and MaterialsReliability, 16(4):617-621.
  • Makino H, Shimizu H, 2018. Influence of crystallographic polarity on the opto-electrical properties of polycrystalline ZnO thin films deposited by magnetron sputtering. Applied surface science, 439:839-844.
  • Ocak YS, Kulakci M, Kılıçoğlu T, Turan R, Akkılıç K, 2009. Current–voltage and capacitance– voltage characteristics of a Sn/Methylene Blue/p-Si Schottky diode. Synthetic Metals, 159(15-16):1603-1607.
  • Patel A, Pataniya P, Solanki GK, Sumesh CK, Patel KD, Pathak VM, 2019. Fabrication, photoresponse and temperature dependence of n-VO2/n-MoSe2 heterojunction diode. Superlattices and Microstructures, 130:160-167.
  • Philipp H, Taft E, 1959. Optical constants of germanium in the region 1 to 10 eV. Physical Review, 113(4):1002.
  • Pradeep I, Kumar ER, Suriyanarayanan N, Srinivas C, Mehar M, 2018. Effects of doping concentration on structural, morphological, optical and electrical properties of tungsten doped V2O5 nanorods. Ceramics International, 44(6):7098-7109.
  • Rajagopal Reddy V, Prasad C, Janardhanam V, Choi CJ, 2021. Electrical and carrier transport properties of Ti/α-amylase/p-InP MPS junction with a α-amylase polymer interlayer. Journal of Materials Science: Materials in Electronics, 32:1-14.
  • Reus WF, Thuo MM, Shapiro ND, Nijhuis CA, Whitesides GM, 2012. The SAM, Not the Electrodes, Dominates Charge Transport in Metal-Monolayer//Ga2O3/Gallium–Indium Eutectic Junctions. ACS Nano, 6(6):4806-4822.
  • Rhoderick EH, 1982. Metal-semiconductor contacts. IEE Proceedings I-Solid-State and Electron Devices, 129(1):1.
  • Serkan U, Coşkun B, İlhan M, Koc MM, 2021. Optoelectronic Properties of ZnO: TiO2 Nanocomposite Thin Films. Journal Of Materials and Electronic Devices, 5(1):21-27.
  • Smirnov M, Baban C, Rusu G, 2010. Structural and optical characteristics of spin-coated ZnO thin films. Applied surface science, 256(8):2405-2408.
  • Tung R, 1992. Electron transport at metal-semiconductor interfaces: General theory. Physical Review B, 45(23):13509.
  • Ünal F, 2021. Investigation Of Some Optical and Electrical Properties of InSe Thin Film, a Window Layer for Photovoltaic Cell Growth on Glass/GaSe Substrate by M-CBD Method. Karadeniz Fen Bilimleri Dergisi, 11(1):297-306.
  • ÜNAL F, Demir S, Mammadov H, 2021. Structural, surface morphological, optical and electrical properties of InxSey thin films, an absorber layer for photovoltaic cells fabricated by M-CBD method using different variables. Turkish Journal of Chemistry, 45(6):1761-1773.
  • Wagle S, Shirodkar V, 2000. Space-charge-limited conduction in thin film Al/Sb2Pb1Se7/Al devices. Brazilian Journal of physics, 30(2):380-385.
  • Yavuz A, Ozdemir N, Erdogan PY, Zengin H, Zengin G, Bedir M, 2019. Nickel-based materials electrodeposited from a deep eutectic solvent on steel for energy storage devices. Applied Physics A, 125(8):1-10.
  • Zurnacı M, Ünal F, Demir S, Gür M, Şener N, Şener İ, 2021. Synthesis of a new 1,3,4- thiadiazole-substituted phenanthroimidazole derivative, its growth on glass/ITO as a thin film and analysis of some surface and optoelectronic properties. New Journal of Chemistry, 45(48):22678-22690.

Işığa Duyarlı n-tipi Katkılı Metal oksit/p-tipi Si Heteroekleminin Elektriksel Karakterizasyonu

Yıl 2022, Cilt: 12 Sayı: 3, 1506 - 1517, 01.09.2022
https://doi.org/10.21597/jist.1101786

Öz

n-tipi %1.5 Ge katkılı WOx tabakası Al/p-tipi Si üzerine Fiziksel Buhar Biriktirme (FBB) yöntemi kullanılarak büyütülmüştür ve Al/Si/WOx(%1.5Ge) p-n eklemi elde edilmiştir. İnce film tabakasının yüzey özellikleri SEM ile incelenmiş ve tabakanın genel olarak pürüzsüz bir yapıya sahip olduğu görülmüştür. Ayrıca tabakayı oluşturan elementlerin dağılımı Enerji dağılımlı X-ray spektroskopisi (EDX) ile incelenmiş %96.4 W, %1.5 Ge ve %2.2 O oranlarında homojen bir şekilde dağılım gösterdikleri görülmüştür. Üretilen heteroeklemin elektriksel özelliklerinin incelenebilmesi için aktif tabaka yüzeyine yine FBB yöntemiyle Ag doğrultucu kontakları alınmıştır. Sonuç itibariyle Al/Si/WOx(%1.5Ge)/Ag p-n ekleminin ±4V potansiyel aralığında, karanlık ve farklı ışık şiddetlerinde I-V ölçümleri yapılmış, seri direnç, diyot idealite faktörü, engel yüksekliği, ters doyma akımı gibi diyot parametreleri farklı yöntemler kullanarak incelenmiştir. Seri direnç değerlerinin 70-10Ω arasında, diyot idealite faktörünün 14.1 ile 3.9 arasında, engel yüksekliğinin 0.54-0.15eV ve ters doyma akımının 1.34x10-4A-1.1x10-3A arasında değerler aldığı görülmüştür. Işık şiddetinin artmasıyla ürettiğimiz diyotun seri direnci azalmış diyot ideale yaklaşmıştır. Ayrıca ters doyma akımının ışık şiddetiyle on kat artması ürettiğimiz heteroeklemin tipik fotodiyot davranışı sergilediğinin göstergesidir.

Kaynakça

  • Al-Hazmi FE, Yakuphanoglu F, 2018. Photoconducting and photovoltaic properties of ZnO: TiO2 composite/p-silicon heterojunction photodiode. Silicon, 10(3):781-787.
  • Al-Ta’ii HMJ, Periasamy V, Amin YM, 2016. Electronic Characterization of Au/DNA/ITO Metal- Semiconductor-Metal Diode and Its Application as a Radiation Sensor. PLOS ONE, 11(1):e0145423.
  • Aldemir DA, Kökce A, Özdemir AF, 2017. Schottky diyot parametrelerini belirlemede kullanılan metotların geniş bir sıcaklık aralığı için kıyaslanması. SAÜ Fen Bilimleri Enstitüsü Dergisi, 1-1.
  • Altındal Ş, Sevgili Ö, Azizian-Kalandaragh Y, 2019. A comparison of electrical parameters of Au/n-Si and Au/(CoSO4–PVP)/n-Si structures (SBDs) to determine the effect of (CoSO4–PVP) organic interlayer at room temperature. Journal of Materials Science: Materials in Electronics, 30(10):9273-9280.
  • Aslan N, Kurt MŞ, Koç MM, 2022. Morpho-structural and optoelectronic properties of diamond like carbon–germanium (DLC-Ge) composite thin films produced by magnetron sputtering. Optical Materials, 126: 112229.
  • Berglund CN 1966. Surface states at steam-grown silicon-silicon dioxide interfaces. IEEE Transactions on Electron Devices, 13:701-705.
  • Cavalcoli D, Impellizzeri G, Romano L, Miritello M, Grimaldi MG, Fraboni B, 2015. Optical properties of nanoporous germanium thin films. ACS applied materials & interfaces, 7(31):16992-16998.
  • Çetinkaya HG, Tecimer H, Uslu H, Altındal Ş, 2013. Photovoltaic characteristics of Au/PVA (Bi- doped)/n-Si Schottky barrier diodes (SBDs) at various temperatures. Current Applied Physics, 13(6):1150-1156.
  • Chakhalia J, Liu X, Fiete GA, 2020. Strongly correlated and topological states in [111] grown transition metal oxide thin films and heterostructures. Applied Materials, 8(5):050904.
  • Cheung SK, Cheung NW, 1986. Extraction of Schottky diode parameters from forward current‐voltage characteristics. Applied Physics Letters, 49(2):85-87.
  • Cong S, Geng F, Zhao Z, 2016. Tungsten oxide materials for optoelectronic applications. Advanced materials, 28(47):10518-10528.
  • Farag A, 2009. Structure and transport mechanisms of Si/porous Si n–p junctions prepared by liquid phase epitaxy. Applied Surface Science, 255(6):3493-3498.
  • Firat YE, 2020. Elektrodepozisyon Yöntemiyle Bakır Katkılı Tungsten Oksit (Cu: WO3) İnce Filmlerinin Üretilmesi Ve Karakterizasyonu. Journal of the Institute of Science and Technology, 10(1): 234-241.
  • Gündüz B, Turan N, Kaya E, Çolak N, 2013. The photo-electrical properties of the p-Si/Fe(II)–polymeric complex/Au diode. Synthetic Metals, 184:73-82.
  • Gunduz B, Yahia IS, Yakuphanoglu F, 2012. Electrical and photoconductivity properties of p- Si/P3HT/Al and p-Si/P3HT:MEH-PPV/Al organic devices: Comparison study. Microelectronic Engineering, 98:41-57.
  • Hai Z, Wei Z, Xue C, Xu H, Verpoort F, 2019. Nanostructured tungsten oxide thin film devices: From optoelectronics and ionics to iontronics. Journal of Materials Chemistry C, 7(42):12968-12990.
  • Inamdar SI, Ganbavle VV, Rajpure KY, 2014. ZnO based visible–blind UV photodetector by spray pyrolysis. Superlattices and Microstructures, 76:253-263.
  • Jazmati AK, Abdallah B, 2018. Optical and structural study of ZnO thin films deposited by RF magnetron sputtering at different thicknesses: a comparison with single crystal. Materials Research, 21(3): e20170821.
  • Ji H, Zeng W, Li Y, 2019. Gas sensing mechanisms of metal oxide semiconductors: a focus review. Nanoscale, 11(47):22664-22684.
  • Kalanur SS, Seo H, 2019. Aligned nanotriangles of tantalum doped tungsten oxide for improved photoelectrochemical water splitting. Journal of Alloys and Compounds, 785:1097-1105.
  • Kampen TU, Park S, Zahn DRT, 2002. Barrier height engineering of Ag/GaAs(100) Schottky contacts by a thin organic interlayer. Applied Surface Science, 190(1):461-466.
  • Karabat MF, Arsel İ, 2015. Al/CuO/p-Si/Al Diyot Yapısının Elektriksel Özellikleri. Batman Üniversitesi Yaşam Bilimleri Dergisi, 5(1):40-53.
  • Krammer A, Magrez A, Vitale WA, Mocny P, Jeanneret P, Guibert E, Whitlow HJ, Ionescu AM, Schüler A, 2017. Elevated transition temperature in Ge doped VO2 thin films. Journal of Applied Physics, 122(4):045304.
  • Kulkarni S, Mane A, Navale S, Kulkarni P, Mulik R, Patil V, 2015. Synthesis, structural, compositional, morphological and optoelectronic properties of tungsten oxide thin films. Journal of Materials Science: Materials in Electronics, 26(2):1087-1096.
  • Kurt MŞ, Arslan ME, Yazici A, Mudu İ, Arslan E, 2021. Tribological, biocompatibility, and antibiofilm properties of tungsten–germanium coating using magnetron sputtering. Journal of Materials Science: Materials in Medicine, 32(1):1-12.
  • Lapa HE, Kökce A, Aldemir DA, Özdemir AF, Altındal Ş, 2020. Effect of illumination on electrical parameters of Au/(P3DMTFT)/n-GaAs Schottky barrier diodes. Indian Journal of Physics, 94(12):1901-1908.
  • Lee SM, Park SJ, Lee KH, Park JS, Park S, Yi Y, Kang SJ, 2015. Enhanced photocurrent of Ge- doped InGaO thin film transistors with quantum dots. Applied Physics Letters, 106(3):031112.
  • Lee YS, Gershon T, Gunawan O, Todorov TK, Gokmen T, Virgus Y, Guha S, 2015. Cu2ZnSnSe4 thin‐film solar cells by thermal co‐evaporation with 11.6% efficiency and improved minority carrier diffusion length. Advanced Energy Materials, 5(7):1401372.
  • Li G, Kim TW, Inoue S, Okamoto K, Fujioka H, 2006. Epitaxial growth of single-crystalline AlN films on tungsten substrates. Applied Physics Letters, 89(24): 241905.
  • Lu HH, Xu JP, Liu L, 2016. Using Ge-doped La-Oxynitride as interfacial passivation layer for GaAs metal-oxide-semiconductor capacitors. IEEE Transactions on Device and MaterialsReliability, 16(4):617-621.
  • Makino H, Shimizu H, 2018. Influence of crystallographic polarity on the opto-electrical properties of polycrystalline ZnO thin films deposited by magnetron sputtering. Applied surface science, 439:839-844.
  • Ocak YS, Kulakci M, Kılıçoğlu T, Turan R, Akkılıç K, 2009. Current–voltage and capacitance– voltage characteristics of a Sn/Methylene Blue/p-Si Schottky diode. Synthetic Metals, 159(15-16):1603-1607.
  • Patel A, Pataniya P, Solanki GK, Sumesh CK, Patel KD, Pathak VM, 2019. Fabrication, photoresponse and temperature dependence of n-VO2/n-MoSe2 heterojunction diode. Superlattices and Microstructures, 130:160-167.
  • Philipp H, Taft E, 1959. Optical constants of germanium in the region 1 to 10 eV. Physical Review, 113(4):1002.
  • Pradeep I, Kumar ER, Suriyanarayanan N, Srinivas C, Mehar M, 2018. Effects of doping concentration on structural, morphological, optical and electrical properties of tungsten doped V2O5 nanorods. Ceramics International, 44(6):7098-7109.
  • Rajagopal Reddy V, Prasad C, Janardhanam V, Choi CJ, 2021. Electrical and carrier transport properties of Ti/α-amylase/p-InP MPS junction with a α-amylase polymer interlayer. Journal of Materials Science: Materials in Electronics, 32:1-14.
  • Reus WF, Thuo MM, Shapiro ND, Nijhuis CA, Whitesides GM, 2012. The SAM, Not the Electrodes, Dominates Charge Transport in Metal-Monolayer//Ga2O3/Gallium–Indium Eutectic Junctions. ACS Nano, 6(6):4806-4822.
  • Rhoderick EH, 1982. Metal-semiconductor contacts. IEE Proceedings I-Solid-State and Electron Devices, 129(1):1.
  • Serkan U, Coşkun B, İlhan M, Koc MM, 2021. Optoelectronic Properties of ZnO: TiO2 Nanocomposite Thin Films. Journal Of Materials and Electronic Devices, 5(1):21-27.
  • Smirnov M, Baban C, Rusu G, 2010. Structural and optical characteristics of spin-coated ZnO thin films. Applied surface science, 256(8):2405-2408.
  • Tung R, 1992. Electron transport at metal-semiconductor interfaces: General theory. Physical Review B, 45(23):13509.
  • Ünal F, 2021. Investigation Of Some Optical and Electrical Properties of InSe Thin Film, a Window Layer for Photovoltaic Cell Growth on Glass/GaSe Substrate by M-CBD Method. Karadeniz Fen Bilimleri Dergisi, 11(1):297-306.
  • ÜNAL F, Demir S, Mammadov H, 2021. Structural, surface morphological, optical and electrical properties of InxSey thin films, an absorber layer for photovoltaic cells fabricated by M-CBD method using different variables. Turkish Journal of Chemistry, 45(6):1761-1773.
  • Wagle S, Shirodkar V, 2000. Space-charge-limited conduction in thin film Al/Sb2Pb1Se7/Al devices. Brazilian Journal of physics, 30(2):380-385.
  • Yavuz A, Ozdemir N, Erdogan PY, Zengin H, Zengin G, Bedir M, 2019. Nickel-based materials electrodeposited from a deep eutectic solvent on steel for energy storage devices. Applied Physics A, 125(8):1-10.
  • Zurnacı M, Ünal F, Demir S, Gür M, Şener N, Şener İ, 2021. Synthesis of a new 1,3,4- thiadiazole-substituted phenanthroimidazole derivative, its growth on glass/ITO as a thin film and analysis of some surface and optoelectronic properties. New Journal of Chemistry, 45(48):22678-22690.
Toplam 46 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Metroloji,Uygulamalı ve Endüstriyel Fizik
Bölüm Fizik / Physics
Yazarlar

Fatih Ünal 0000-0002-6155-7051

Sitki Aktaş 0000-0002-9143-6752

Erken Görünüm Tarihi 26 Ağustos 2022
Yayımlanma Tarihi 1 Eylül 2022
Gönderilme Tarihi 11 Nisan 2022
Kabul Tarihi 25 Nisan 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 12 Sayı: 3

Kaynak Göster

APA Ünal, F., & Aktaş, S. (2022). Işığa Duyarlı n-tipi Katkılı Metal oksit/p-tipi Si Heteroekleminin Elektriksel Karakterizasyonu. Journal of the Institute of Science and Technology, 12(3), 1506-1517. https://doi.org/10.21597/jist.1101786
AMA Ünal F, Aktaş S. Işığa Duyarlı n-tipi Katkılı Metal oksit/p-tipi Si Heteroekleminin Elektriksel Karakterizasyonu. Iğdır Üniv. Fen Bil Enst. Der. Eylül 2022;12(3):1506-1517. doi:10.21597/jist.1101786
Chicago Ünal, Fatih, ve Sitki Aktaş. “Işığa Duyarlı N-Tipi Katkılı Metal oksit/P-Tipi Si Heteroekleminin Elektriksel Karakterizasyonu”. Journal of the Institute of Science and Technology 12, sy. 3 (Eylül 2022): 1506-17. https://doi.org/10.21597/jist.1101786.
EndNote Ünal F, Aktaş S (01 Eylül 2022) Işığa Duyarlı n-tipi Katkılı Metal oksit/p-tipi Si Heteroekleminin Elektriksel Karakterizasyonu. Journal of the Institute of Science and Technology 12 3 1506–1517.
IEEE F. Ünal ve S. Aktaş, “Işığa Duyarlı n-tipi Katkılı Metal oksit/p-tipi Si Heteroekleminin Elektriksel Karakterizasyonu”, Iğdır Üniv. Fen Bil Enst. Der., c. 12, sy. 3, ss. 1506–1517, 2022, doi: 10.21597/jist.1101786.
ISNAD Ünal, Fatih - Aktaş, Sitki. “Işığa Duyarlı N-Tipi Katkılı Metal oksit/P-Tipi Si Heteroekleminin Elektriksel Karakterizasyonu”. Journal of the Institute of Science and Technology 12/3 (Eylül 2022), 1506-1517. https://doi.org/10.21597/jist.1101786.
JAMA Ünal F, Aktaş S. Işığa Duyarlı n-tipi Katkılı Metal oksit/p-tipi Si Heteroekleminin Elektriksel Karakterizasyonu. Iğdır Üniv. Fen Bil Enst. Der. 2022;12:1506–1517.
MLA Ünal, Fatih ve Sitki Aktaş. “Işığa Duyarlı N-Tipi Katkılı Metal oksit/P-Tipi Si Heteroekleminin Elektriksel Karakterizasyonu”. Journal of the Institute of Science and Technology, c. 12, sy. 3, 2022, ss. 1506-17, doi:10.21597/jist.1101786.
Vancouver Ünal F, Aktaş S. Işığa Duyarlı n-tipi Katkılı Metal oksit/p-tipi Si Heteroekleminin Elektriksel Karakterizasyonu. Iğdır Üniv. Fen Bil Enst. Der. 2022;12(3):1506-17.