Araştırma Makalesi
BibTex RIS Kaynak Göster

İğde Çekirdeklerinden Elde Edilen Biyokömür ve Demirle Modifiye Edilmiş Biyokömür Kullanılarak Metil Mavisinin Sulu Çözeltiden Uzaklaştırılması

Yıl 2023, Cilt: 13 Sayı: 3, 1874 - 1887, 01.09.2023
https://doi.org/10.21597/jist.1227020

Öz

Sürekli büyüyen endüstri alanları çevre ve su kirliliğine sebep olmaktadır. Su kirleticilerin sebeplerinden biri de geri kazanılmadan çevreye bırakılan boyar maddelerdir. Bu çalışmada iğde çekirdeklerinden biyokömür ve nanomanyetik biyokömür elde edilmiş, elde edilen biyokömürler anyonik bir boya olan metil mavisini sulu ortamdan uzaklaştırmak için kullanılmıştır. pH, başlangıç metil mavisi konsantrasyonu, sıcaklık, adsorban madde miktarı ve zaman değişiminin adsorpsiyon sürecine etkileri incelenmiştir. Maksimum adsorpsiyon kapasitesi biyokömür (b-EA) için 55.249 mg/g ve nanomanyetik biyokömür (mb-EA ) için 66.225 mg/g bulunmuştur. Adsorpsiyon izotermleri incelendiğinde her iki adsorbanında Langmuir adsorpsiyon izotermine (b-EA için R2=0.963, mb-EA için R2=0.991) daha uygun olduğu görülmüştür. Kinetik verilere göre her iki adsorban için adsorpsiyon hızı yalancı ikinci derecedendir. Ayrıca negatif ΔG değerleri adsorpsiyon sürecinin kendiliğinden, pozitif ΔH değerleri ise endotermik olarak gerçekleştiğini göstermektedir.

Destekleyen Kurum

Bu çalışma, Isparta Süleyman Demirel Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından finansal olarak desteklenmiştir.

Proje Numarası

FDK-2021-8406

Teşekkür

Başta danışman hocam Prof. Dr. Fethiye Göde'ye ve BAP Koordinasyon birimine teşekkür ederim.

Kaynakça

  • Abd-Elhamid, A. I., Emran, M., El-Sadek, M. H., El-Shanshory, A. A., Soliman, H., Akl, M. A., & Rashad, M. (2020). Enhanced removal of cationic dye by eco-friendly activated biochar derived from rice straw. Applied Water Science, 10(1), 1-11. https://doi.org/10.1007/s13201-019-1128-0
  • Aichour, A., Zaghouane-Boudiaf, H., Khodja, H. D. (2022). Highly removal of anionic dye from aqueous medium using a promising biochar derived from date palm petioles: Characterization, adsorption properties and reuse studies. Arabian Journal of Chemistry, 15(1), 103542. https://doi.org/10.1016/j.arabjc.2021.103542
  • Amalina, F., Abd Razak, A. S., Krishnan, S., Zularisam, A. W., & Nasrullah, M. (2022). A comprehensive assessment of the method for producing biochar, its characterization, stability, and potential applications in regenerative economic sustainability–a review. Cleaner Materials, 3, 100045. https://doi.org/10.1016/j.clema.2022.100045
  • Bayram, O., Köksal, E., Moral, E., Göde, F., & Pehlivan, E. (2022). Efficient decolorization of cationic dye (malachite green) by natural-based biosorbent (nano-magnetic Sophora Japonica fruit seed biochar). Journal of Dispersion Science and Technology, 1-12. https://doi.org/10.1080/01932691.2022.2135522
  • Dutta, S., Gupta, B., Srivastava, S. K., & Gupta, A. K. (2021). Recent advances on the removal of dyes from wastewater using various adsorbents: A critical review. Materials Advances. https://doi.org/10.1039/D1MA00354B
  • Fan, L., Luo, C., Li, X., Lu, F., Qiu, H., & Sun, M. (2012). Fabrication of novel magnetic chitosan grafted with graphene oxide to enhance adsorption properties for methyl blue. Journal of hazardous materials, 215, 272-279. https://doi.org/10.1016/j.jhazmat.2012.02.068
  • Ganguly, P., Sarkhel, R., & Das, P. (2020). Synthesis of pyrolyzed biochar and its application for dye removal: Batch, kinetic and isotherm with linear and non-linear mathematical analysis. Surfaces and Interfaces, 20, 100616. https://doi.org/10.1016/j.surfin.2020.100616
  • Godiya, C. B., Xiao, Y., & Lu, X. (2020). Amine functionalized sodium alginate hydrogel for efficient and rapid removal of methyl blue in water. International journal of biological macromolecules, 144, 671-681. https://doi.org/10.1016/j.ijbiomac.2019.12.139
  • Goswami, L., Kushwaha, A., Kafle, S. R., & Kim, B. S. (2022). Surface modification of biochar for dye removal from wastewater. Catalysts, 12(8), 817. https://doi.org/10.3390/catal12080817
  • Jabar, J. M., Odusote, Y. A., Ayinde, Y. T., Yılmaz, M. (2022). African almond (Terminalia catappa L) leaves biochar prepared through pyrolysis using H3PO4 as chemical activator for sequestration of methylene blue dye. Results in engineering, 14, 100385. https://doi.org/10.1016/j.rineng.2022.100385
  • Jellali, S., Azzaz, A. A., Al-Harrasi, M., Charabi, Y., Al-Sabahi, J. N., Al-Raeesi, A., ... & Jeguirim, M. (2022). Conversion of industrial sludge into activated biochar for effective cationic dye removal: Characterization and adsorption properties assessment. Water, 14(14), 2206. https://doi.org/10.3390/w14142206
  • Kubra, K. T., Salman, M. S., & Hasan, M. N. (2021). Enhanced toxic dye removal from wastewater using biodegradable polymeric natural adsorbent. Journal of Molecular Liquids, 328, 115468. https://doi.org/10.1016/j.molliq.2021.115468
  • Kutluay, S., Baytar, O., & Şahin, Ö. (2019). Equilibrium, kinetic and thermodynamic studies for dynamic adsorption of benzene in gas phase onto activated carbon produced from elaeagnus angustifolia seeds. Journal of Environmental Chemical Engineering, 7(2), 102947. https://doi.org/10.1016/j.jece.2019.102947
  • Li, J., Yu, G., Pan, L., Li, C., You, F., Xie, S., ... & Shang, X. (2018). Study of ciprofloxacin removal by biochar obtained from used tea leaves. Journal of Environmental Sciences, 73, 20-30. https://doi.org/10.1016/j.jes.2017.12.024
  • Liu, X. J., Li, M. F., & Singh, S. K. (2021). Manganese-modified lignin biochar as adsorbent for removal of methylene blue. Journal of Materials Research and Technology, 12, 1434-1445. https://doi.org/10.1016/j.jmrt.2021.03.076
  • Moharm, A. E., El Naeem, G. A., Soliman, H. M., Abd-Elhamid, A. I., El-Bardan, A. A., Kassem, T. S., & Bräse, S. (2022). Fabrication and characterization of effective biochar biosorbent derived from agricultural waste to remove cationic dyes from wastewater. Polymers, 14(13), 2587. https://doi.org/10.3390/polym14132587
  • Prabakaran, E., Pillay, K., & Brink, H. (2022). Hydrothermal synthesis of magnetic-biochar nanocomposite derived from avocado peel and its performance as an adsorbent for the removal of methylene blue from wastewater. Materials Today Sustainability, 18, 100123. https://doi.org/10.1016/j.mtsust.2022.100123
  • Praveen, S., Jegan, J., Bhagavathi Pushpa, T., Gokulan, R., & Bulgariu, L. (2022). Biochar for removal of dyes in contaminated water: an overview. Biochar, 4(1), 1-16. https://doi.org/10.1007/s42773-022-00131-8
  • Raj, A., Yadav, A., Rawat, A. P., Singh, A. K., Kumar, S., Pandey, A. K., ... & Pandey, A. (2021). Kinetic and thermodynamic investigations of sewage sludge biochar in removal of Remazol Brilliant Blue R dye from aqueous solution and evaluation of residual dyes cytotoxicity. Environmental Technology & Innovation, 23, 101556. https://doi.org/10.1016/j.eti.2021.101556
  • Shaikh, W. A., Kumar, A., Chakraborty, S., Islam, R. U., Bhattacharya, T., & Biswas, J. K. (2022). Biochar-based nanocomposite from waste tea leaf for toxic dye removal: From facile fabrication to functional fitness. Chemosphere, 291, 132788. https://doi.org/10.1016/j.chemosphere.2021.132788
  • Srivatsav, P., Bhargav, B. S., Shanmugasundaram, V., Arun, J., Gopinath, K. P., & Bhatnagar, A. (2020). Biochar as an eco-friendly and economical adsorbent for the removal of colorants (dyes) from aqueous environment: A review. Water, 12(12), 3561. https://doi.org/10.3390/w12123561
  • Wang, L., Ok, Y. S., Tsang, D. C., Alessi, D. S., Rinklebe, J., Wang, H., ... & Hou, D. (2020). New trends in biochar pyrolysis and modification strategies: feedstock, pyrolysis conditions, sustainability concerns and implications for soil amendment. Soil Use and Management, 36(3), 358-386. https://doi.org/10.1111/sum.12592
  • Yang, L., Zhang, Y., Liu, X., Jiang, X., Zhang, Z., Zhang, T., & Zhang, L. (2014). The investigation of synergistic and competitive interaction between dye Congo red and methyl blue on magnetic MnFe2O4. Chemical Engineering Journal, 246, 88-96. https://doi.org/10.1016/j.cej.2014.02.044
  • Zeng, H., Qi, W., Zhai, L., Wang, F., Zhang, J.ve Li, D. (2021). Magnetic biochar synthesized with waterworks sludge and sewage sludge and its potential for methylene blue removal. Journal of Environmental Chemical Engineering, 9(5), 105951. https://doi.org/10.1016/j.jece.2021.105951
  • Zhang, Y., Hui, C., Wei, R., Jiang, Y., Xu, L., Zhao, Y., ... & Jiang, H. (2022). Study on anionic and cationic dye adsorption behavior and mechanism of biofilm produced by Bacillus amyloliquefaciens DT. Applied Surface Science, 573, 151627. https://doi.org/10.1016/j.apsusc.2021.151627

Removal of Methyl Blue from Aqueous Solution by Using Biochar of Silverberry Seeds and Iron Modified Biochar

Yıl 2023, Cilt: 13 Sayı: 3, 1874 - 1887, 01.09.2023
https://doi.org/10.21597/jist.1227020

Öz

Continuously growing industrial areas cause environmental and water pollution. One of the causes of water pollutants is the dyestuffs released into the environment without being recovered. In this study, biochar and nanomagnetic biochar were obtained from silverberry seeds, and the obtained biochars were used to remove methyl blue, an anionic dye, from the aqueous medium. The effects of pH, initial methyl blue concentration, temperature, amount of adsorbent and time change on the adsorption process were investigated. The maximum adsorption capacity was found to be 55.249 mg/g for biochar (b-EA) and 66.225 mg/g for nanomagnetic biochar (mb-EA). When the adsorption isotherms were examined, it was seen that both adsorbents were more suitable for Langmuir adsorption isotherm (R2=0.963 for b-EA, R2=0.991 for mb-EA). According to the kinetic data, the adsorption rate for both adsorbents is pseudo-second-order. In addition, negative ΔG values indicate that the adsorption process occurs spontaneously and positive ΔH values endothermically.

Proje Numarası

FDK-2021-8406

Kaynakça

  • Abd-Elhamid, A. I., Emran, M., El-Sadek, M. H., El-Shanshory, A. A., Soliman, H., Akl, M. A., & Rashad, M. (2020). Enhanced removal of cationic dye by eco-friendly activated biochar derived from rice straw. Applied Water Science, 10(1), 1-11. https://doi.org/10.1007/s13201-019-1128-0
  • Aichour, A., Zaghouane-Boudiaf, H., Khodja, H. D. (2022). Highly removal of anionic dye from aqueous medium using a promising biochar derived from date palm petioles: Characterization, adsorption properties and reuse studies. Arabian Journal of Chemistry, 15(1), 103542. https://doi.org/10.1016/j.arabjc.2021.103542
  • Amalina, F., Abd Razak, A. S., Krishnan, S., Zularisam, A. W., & Nasrullah, M. (2022). A comprehensive assessment of the method for producing biochar, its characterization, stability, and potential applications in regenerative economic sustainability–a review. Cleaner Materials, 3, 100045. https://doi.org/10.1016/j.clema.2022.100045
  • Bayram, O., Köksal, E., Moral, E., Göde, F., & Pehlivan, E. (2022). Efficient decolorization of cationic dye (malachite green) by natural-based biosorbent (nano-magnetic Sophora Japonica fruit seed biochar). Journal of Dispersion Science and Technology, 1-12. https://doi.org/10.1080/01932691.2022.2135522
  • Dutta, S., Gupta, B., Srivastava, S. K., & Gupta, A. K. (2021). Recent advances on the removal of dyes from wastewater using various adsorbents: A critical review. Materials Advances. https://doi.org/10.1039/D1MA00354B
  • Fan, L., Luo, C., Li, X., Lu, F., Qiu, H., & Sun, M. (2012). Fabrication of novel magnetic chitosan grafted with graphene oxide to enhance adsorption properties for methyl blue. Journal of hazardous materials, 215, 272-279. https://doi.org/10.1016/j.jhazmat.2012.02.068
  • Ganguly, P., Sarkhel, R., & Das, P. (2020). Synthesis of pyrolyzed biochar and its application for dye removal: Batch, kinetic and isotherm with linear and non-linear mathematical analysis. Surfaces and Interfaces, 20, 100616. https://doi.org/10.1016/j.surfin.2020.100616
  • Godiya, C. B., Xiao, Y., & Lu, X. (2020). Amine functionalized sodium alginate hydrogel for efficient and rapid removal of methyl blue in water. International journal of biological macromolecules, 144, 671-681. https://doi.org/10.1016/j.ijbiomac.2019.12.139
  • Goswami, L., Kushwaha, A., Kafle, S. R., & Kim, B. S. (2022). Surface modification of biochar for dye removal from wastewater. Catalysts, 12(8), 817. https://doi.org/10.3390/catal12080817
  • Jabar, J. M., Odusote, Y. A., Ayinde, Y. T., Yılmaz, M. (2022). African almond (Terminalia catappa L) leaves biochar prepared through pyrolysis using H3PO4 as chemical activator for sequestration of methylene blue dye. Results in engineering, 14, 100385. https://doi.org/10.1016/j.rineng.2022.100385
  • Jellali, S., Azzaz, A. A., Al-Harrasi, M., Charabi, Y., Al-Sabahi, J. N., Al-Raeesi, A., ... & Jeguirim, M. (2022). Conversion of industrial sludge into activated biochar for effective cationic dye removal: Characterization and adsorption properties assessment. Water, 14(14), 2206. https://doi.org/10.3390/w14142206
  • Kubra, K. T., Salman, M. S., & Hasan, M. N. (2021). Enhanced toxic dye removal from wastewater using biodegradable polymeric natural adsorbent. Journal of Molecular Liquids, 328, 115468. https://doi.org/10.1016/j.molliq.2021.115468
  • Kutluay, S., Baytar, O., & Şahin, Ö. (2019). Equilibrium, kinetic and thermodynamic studies for dynamic adsorption of benzene in gas phase onto activated carbon produced from elaeagnus angustifolia seeds. Journal of Environmental Chemical Engineering, 7(2), 102947. https://doi.org/10.1016/j.jece.2019.102947
  • Li, J., Yu, G., Pan, L., Li, C., You, F., Xie, S., ... & Shang, X. (2018). Study of ciprofloxacin removal by biochar obtained from used tea leaves. Journal of Environmental Sciences, 73, 20-30. https://doi.org/10.1016/j.jes.2017.12.024
  • Liu, X. J., Li, M. F., & Singh, S. K. (2021). Manganese-modified lignin biochar as adsorbent for removal of methylene blue. Journal of Materials Research and Technology, 12, 1434-1445. https://doi.org/10.1016/j.jmrt.2021.03.076
  • Moharm, A. E., El Naeem, G. A., Soliman, H. M., Abd-Elhamid, A. I., El-Bardan, A. A., Kassem, T. S., & Bräse, S. (2022). Fabrication and characterization of effective biochar biosorbent derived from agricultural waste to remove cationic dyes from wastewater. Polymers, 14(13), 2587. https://doi.org/10.3390/polym14132587
  • Prabakaran, E., Pillay, K., & Brink, H. (2022). Hydrothermal synthesis of magnetic-biochar nanocomposite derived from avocado peel and its performance as an adsorbent for the removal of methylene blue from wastewater. Materials Today Sustainability, 18, 100123. https://doi.org/10.1016/j.mtsust.2022.100123
  • Praveen, S., Jegan, J., Bhagavathi Pushpa, T., Gokulan, R., & Bulgariu, L. (2022). Biochar for removal of dyes in contaminated water: an overview. Biochar, 4(1), 1-16. https://doi.org/10.1007/s42773-022-00131-8
  • Raj, A., Yadav, A., Rawat, A. P., Singh, A. K., Kumar, S., Pandey, A. K., ... & Pandey, A. (2021). Kinetic and thermodynamic investigations of sewage sludge biochar in removal of Remazol Brilliant Blue R dye from aqueous solution and evaluation of residual dyes cytotoxicity. Environmental Technology & Innovation, 23, 101556. https://doi.org/10.1016/j.eti.2021.101556
  • Shaikh, W. A., Kumar, A., Chakraborty, S., Islam, R. U., Bhattacharya, T., & Biswas, J. K. (2022). Biochar-based nanocomposite from waste tea leaf for toxic dye removal: From facile fabrication to functional fitness. Chemosphere, 291, 132788. https://doi.org/10.1016/j.chemosphere.2021.132788
  • Srivatsav, P., Bhargav, B. S., Shanmugasundaram, V., Arun, J., Gopinath, K. P., & Bhatnagar, A. (2020). Biochar as an eco-friendly and economical adsorbent for the removal of colorants (dyes) from aqueous environment: A review. Water, 12(12), 3561. https://doi.org/10.3390/w12123561
  • Wang, L., Ok, Y. S., Tsang, D. C., Alessi, D. S., Rinklebe, J., Wang, H., ... & Hou, D. (2020). New trends in biochar pyrolysis and modification strategies: feedstock, pyrolysis conditions, sustainability concerns and implications for soil amendment. Soil Use and Management, 36(3), 358-386. https://doi.org/10.1111/sum.12592
  • Yang, L., Zhang, Y., Liu, X., Jiang, X., Zhang, Z., Zhang, T., & Zhang, L. (2014). The investigation of synergistic and competitive interaction between dye Congo red and methyl blue on magnetic MnFe2O4. Chemical Engineering Journal, 246, 88-96. https://doi.org/10.1016/j.cej.2014.02.044
  • Zeng, H., Qi, W., Zhai, L., Wang, F., Zhang, J.ve Li, D. (2021). Magnetic biochar synthesized with waterworks sludge and sewage sludge and its potential for methylene blue removal. Journal of Environmental Chemical Engineering, 9(5), 105951. https://doi.org/10.1016/j.jece.2021.105951
  • Zhang, Y., Hui, C., Wei, R., Jiang, Y., Xu, L., Zhao, Y., ... & Jiang, H. (2022). Study on anionic and cationic dye adsorption behavior and mechanism of biofilm produced by Bacillus amyloliquefaciens DT. Applied Surface Science, 573, 151627. https://doi.org/10.1016/j.apsusc.2021.151627
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Kimya Mühendisliği
Bölüm Kimya / Chemistry
Yazarlar

Emel Moral 0000-0002-8158-5797

Fethiye Göde 0000-0002-3008-1353

Proje Numarası FDK-2021-8406
Erken Görünüm Tarihi 29 Ağustos 2023
Yayımlanma Tarihi 1 Eylül 2023
Gönderilme Tarihi 30 Aralık 2022
Kabul Tarihi 29 Mayıs 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 13 Sayı: 3

Kaynak Göster

APA Moral, E., & Göde, F. (2023). İğde Çekirdeklerinden Elde Edilen Biyokömür ve Demirle Modifiye Edilmiş Biyokömür Kullanılarak Metil Mavisinin Sulu Çözeltiden Uzaklaştırılması. Journal of the Institute of Science and Technology, 13(3), 1874-1887. https://doi.org/10.21597/jist.1227020
AMA Moral E, Göde F. İğde Çekirdeklerinden Elde Edilen Biyokömür ve Demirle Modifiye Edilmiş Biyokömür Kullanılarak Metil Mavisinin Sulu Çözeltiden Uzaklaştırılması. Iğdır Üniv. Fen Bil Enst. Der. Eylül 2023;13(3):1874-1887. doi:10.21597/jist.1227020
Chicago Moral, Emel, ve Fethiye Göde. “İğde Çekirdeklerinden Elde Edilen Biyokömür Ve Demirle Modifiye Edilmiş Biyokömür Kullanılarak Metil Mavisinin Sulu Çözeltiden Uzaklaştırılması”. Journal of the Institute of Science and Technology 13, sy. 3 (Eylül 2023): 1874-87. https://doi.org/10.21597/jist.1227020.
EndNote Moral E, Göde F (01 Eylül 2023) İğde Çekirdeklerinden Elde Edilen Biyokömür ve Demirle Modifiye Edilmiş Biyokömür Kullanılarak Metil Mavisinin Sulu Çözeltiden Uzaklaştırılması. Journal of the Institute of Science and Technology 13 3 1874–1887.
IEEE E. Moral ve F. Göde, “İğde Çekirdeklerinden Elde Edilen Biyokömür ve Demirle Modifiye Edilmiş Biyokömür Kullanılarak Metil Mavisinin Sulu Çözeltiden Uzaklaştırılması”, Iğdır Üniv. Fen Bil Enst. Der., c. 13, sy. 3, ss. 1874–1887, 2023, doi: 10.21597/jist.1227020.
ISNAD Moral, Emel - Göde, Fethiye. “İğde Çekirdeklerinden Elde Edilen Biyokömür Ve Demirle Modifiye Edilmiş Biyokömür Kullanılarak Metil Mavisinin Sulu Çözeltiden Uzaklaştırılması”. Journal of the Institute of Science and Technology 13/3 (Eylül 2023), 1874-1887. https://doi.org/10.21597/jist.1227020.
JAMA Moral E, Göde F. İğde Çekirdeklerinden Elde Edilen Biyokömür ve Demirle Modifiye Edilmiş Biyokömür Kullanılarak Metil Mavisinin Sulu Çözeltiden Uzaklaştırılması. Iğdır Üniv. Fen Bil Enst. Der. 2023;13:1874–1887.
MLA Moral, Emel ve Fethiye Göde. “İğde Çekirdeklerinden Elde Edilen Biyokömür Ve Demirle Modifiye Edilmiş Biyokömür Kullanılarak Metil Mavisinin Sulu Çözeltiden Uzaklaştırılması”. Journal of the Institute of Science and Technology, c. 13, sy. 3, 2023, ss. 1874-87, doi:10.21597/jist.1227020.
Vancouver Moral E, Göde F. İğde Çekirdeklerinden Elde Edilen Biyokömür ve Demirle Modifiye Edilmiş Biyokömür Kullanılarak Metil Mavisinin Sulu Çözeltiden Uzaklaştırılması. Iğdır Üniv. Fen Bil Enst. Der. 2023;13(3):1874-87.