Günümüz akıllı evlerinde IoT (Internet of Things) teknolojisinin alt yapısı kullanılmaktadır. Akıllı evlerin kullanımı arttıkça bu alandaki siber saldırılar da artmaktadır. Akıllı evlere yönelik siber saldırıları mümkün olduğunca erken tespit etmek ve önlemek çok önemlidir. Bu çalışmada, akıllı evlere yönelik siber saldırıları tespit etmek ve önlemek için makine öğrenmesi tabanlı bir yöntem önerilmiştir. Öncelikle “Home Assistant” teknolojisini kullanarak akıllı ev platformu oluşturulmuştur. Akıllı evler, “Home Assistant” teknolojisini kapsamlı bir şekilde kullanır. Oluşturulan akıllı ev platformu, sensörler ve kameralardan yararlanıyor. İnsanlar, sensörler ve kameralar kullanarak evlerini uzaktan izleyebilmekte ve yönetebilmektedir. Geliştirilen akıllı ev platformu üzerinde “brute force ftp”, “brute force ssh”, “dos http flood”, “dos icmp flood”, “dos syn flood”, “syn scan” ve “udp scan” olmak üzere yedi saldırı gerçekleştirilmiştir. Toplanan veri seti, “normal” paketlerle birlikte sekiz sınıftan oluşmaktadır. Sekiz sınıf için toplam 435815 örnek veri toplanmıştır. Elde edilen bu veri seti üzerinde XGBOOST algoritması kullanılmış ve saldırı türleri sınıflandırılmıştır. Hold-out 80:20 ve Hold-out 70:30 eğitim testi verileri için sırasıyla %92.55 ve %92.49 doğruluk hesaplanmıştır. Önerilen XGBOOST algoritmasının sonuçları, diğer makine öğrenimi algoritmalarının sonuçlarıyla karşılaştırılmış ve sonuçların başarılı olduğu görülmüştür.
Nesnelerin İnterneti DDOS XGBOOST Home Assistant Brute Force Flood
Fırat Üniversitesi Bilimsel Araştırma Projeleri (FÜBAP) Koordinasyon Birimi
TEKF.21.18
Bu çalışma TEKF.21.18 numaralı Fırat Üniversitesi Bilimsel Araştırma Projeleri (FÜBAP) Koordinasyon Birimi tarafından desteklenmiştir.
In today's smart homes, the infrastructure of IoT (Internet of Things) technology is used. As the use of smart homes increases, cyber attacks in this area are also increasing. It is very important to detect and prevent cyber attacks on smart homes as early as possible. In this study, a machine learning-based method is proposed to detect and prevent cyber attacks against smart homes. First of all, a smart home platform was created using the “Home Assistant” technology. Smart homes make extensive use of “Home Assistant” technology. The created smart home platform makes use of sensors and cameras. People can monitor and manage their homes remotely using sensors and cameras. Seven attacks, namely “brute force ftp”, “brute force ssh”, “dos http flood”, “dos icmp flood”, “dos syn flood”, “syn scan” and “udp scan” were carried out on the developed smart home platform. The collected dataset consists of eight classes with “normal” packages. A total of 435815 sample data were collected for eight classes. XGBOOST algorithm was used on this obtained dataset and attack types were classified. For Hold-out 80:20 and Hold-out 70:30 training test data, 92.55% and 92.49% accuracy were calculated, respectively. The results of the proposed XGBOOST algorithm were compared with the results of other machine learning algorithms and the results were found to be successful.
Internet of Things DDOS XGBOOST Home Assistant. Brute Force Flood
TEKF.21.18
Birincil Dil | Türkçe |
---|---|
Konular | Bilgisayar Yazılımı |
Bölüm | Araştırma Makalesi |
Yazarlar | |
Proje Numarası | TEKF.21.18 |
Erken Görünüm Tarihi | 22 Ağustos 2023 |
Yayımlanma Tarihi | 23 Eylül 2023 |
Gönderilme Tarihi | 17 Şubat 2022 |
Yayımlandığı Sayı | Yıl 2023 Cilt: 6 Sayı: 2 |
Zeki Sistemler Teori ve Uygulamaları Dergisi