Araştırma Makalesi
BibTex RIS Kaynak Göster

Akıllı Ev Sistemleri için XGBoost Tabanlı Saldırı Tespit Yöntemi

Yıl 2023, Cilt: 6 Sayı: 2, 152 - 158, 23.09.2023
https://doi.org/10.38016/jista.1075054

Öz

Günümüz akıllı evlerinde IoT (Internet of Things) teknolojisinin alt yapısı kullanılmaktadır. Akıllı evlerin kullanımı arttıkça bu alandaki siber saldırılar da artmaktadır. Akıllı evlere yönelik siber saldırıları mümkün olduğunca erken tespit etmek ve önlemek çok önemlidir. Bu çalışmada, akıllı evlere yönelik siber saldırıları tespit etmek ve önlemek için makine öğrenmesi tabanlı bir yöntem önerilmiştir. Öncelikle “Home Assistant” teknolojisini kullanarak akıllı ev platformu oluşturulmuştur. Akıllı evler, “Home Assistant” teknolojisini kapsamlı bir şekilde kullanır. Oluşturulan akıllı ev platformu, sensörler ve kameralardan yararlanıyor. İnsanlar, sensörler ve kameralar kullanarak evlerini uzaktan izleyebilmekte ve yönetebilmektedir. Geliştirilen akıllı ev platformu üzerinde “brute force ftp”, “brute force ssh”, “dos http flood”, “dos icmp flood”, “dos syn flood”, “syn scan” ve “udp scan” olmak üzere yedi saldırı gerçekleştirilmiştir. Toplanan veri seti, “normal” paketlerle birlikte sekiz sınıftan oluşmaktadır. Sekiz sınıf için toplam 435815 örnek veri toplanmıştır. Elde edilen bu veri seti üzerinde XGBOOST algoritması kullanılmış ve saldırı türleri sınıflandırılmıştır. Hold-out 80:20 ve Hold-out 70:30 eğitim testi verileri için sırasıyla %92.55 ve %92.49 doğruluk hesaplanmıştır. Önerilen XGBOOST algoritmasının sonuçları, diğer makine öğrenimi algoritmalarının sonuçlarıyla karşılaştırılmış ve sonuçların başarılı olduğu görülmüştür.

Destekleyen Kurum

Fırat Üniversitesi Bilimsel Araştırma Projeleri (FÜBAP) Koordinasyon Birimi

Proje Numarası

TEKF.21.18

Teşekkür

Bu çalışma TEKF.21.18 numaralı Fırat Üniversitesi Bilimsel Araştırma Projeleri (FÜBAP) Koordinasyon Birimi tarafından desteklenmiştir.

Kaynakça

  • Ahmed, M.S. (2021) “Designing of internet of things for real time system,” Materials Today: Proceedings [Preprint]. doi:10.1016/j.matpr.2021.03.527.
  • Choi, W. et al. (2021) “Smart home and internet of things: A bibliometic study,” Journal of Cleaner Production, 301, p. 126908. doi:10.1016/j.jclepro.2021.126908.
  • Ericsson (2020) Ericsson Mobility Report.
  • Gupta, K. and Shukla, S. (2016) “Internet of Things: Security challenges for next generation networks,” in 2016 1st International Conference on Innovation and Challenges in Cyber Security, ICICCS 2016. Institute of Electrical and Electronics Engineers Inc., pp. 315–318. doi:10.1109/ICICCS.2016.7542301.
  • Hussein, M., Zorkany, M. and Abdel Kader, N.S. (2018) “Design and Implementation of IoT Platform for Real Time Systems,” in Advances in Intelligent Systems and Computing. Springer Verlag, pp. 171–180. doi:10.1007/978-3-319-74690-6_17.
  • Lawal, M.A., Shaikh, R.A. and Hassan, S.R. (2021) “A DDoS Attack Mitigation Framework for IoT Networks using Fog Computing,” Procedia Computer Science, 182, pp. 13–20. doi:10.1016/j.procs.2021.02.003.
  • Mohammadi, M. et al. (2018) “Deep learning for IoT big data and streaming analytics: A survey,” IEEE Communications Surveys and Tutorials. Institute of Electrical and Electronics Engineers Inc., pp. 2923–2960. doi:10.1109/COMST.2018.2844341.
  • Okegbile, S.D. and Ogunranti, O.I. (2020) “Users emulation attack management in the massive internet of things enabled environment,” ICT Express, 6(4), pp. 353–356. doi:10.1016/j.icte.2020.06.005.
  • Shafiq, M. et al. (2020) “IoT malicious traffic identification using wrapper-based feature selection mechanisms,” Computers and Security, 94, p. 101863. doi:10.1016/j.cose.2020.101863.
  • Srinadh, V. et al. (2021) “An analytical study on security and future research of Internet of Things,” Materials Today: Proceedings [Preprint]. doi:10.1016/j.matpr.2020.12.342.
  • Yavuz, F.Y. (2018) Deep Learning in Cyber Security for Internet of Things, Yüksek Lisans Tezi, Istanbul City University.
  • Zhang, C. and Green, R. (2015) “Communication security in internet of thing: Preventive measure and avoid DDoS attack over IoT network,” Simulation Series, 47(3), pp. 8–15.

XGBoost Based Intrusion Detection Method for Smart Home Systems

Yıl 2023, Cilt: 6 Sayı: 2, 152 - 158, 23.09.2023
https://doi.org/10.38016/jista.1075054

Öz

In today's smart homes, the infrastructure of IoT (Internet of Things) technology is used. As the use of smart homes increases, cyber attacks in this area are also increasing. It is very important to detect and prevent cyber attacks on smart homes as early as possible. In this study, a machine learning-based method is proposed to detect and prevent cyber attacks against smart homes. First of all, a smart home platform was created using the “Home Assistant” technology. Smart homes make extensive use of “Home Assistant” technology. The created smart home platform makes use of sensors and cameras. People can monitor and manage their homes remotely using sensors and cameras. Seven attacks, namely “brute force ftp”, “brute force ssh”, “dos http flood”, “dos icmp flood”, “dos syn flood”, “syn scan” and “udp scan” were carried out on the developed smart home platform. The collected dataset consists of eight classes with “normal” packages. A total of 435815 sample data were collected for eight classes. XGBOOST algorithm was used on this obtained dataset and attack types were classified. For Hold-out 80:20 and Hold-out 70:30 training test data, 92.55% and 92.49% accuracy were calculated, respectively. The results of the proposed XGBOOST algorithm were compared with the results of other machine learning algorithms and the results were found to be successful.

Proje Numarası

TEKF.21.18

Kaynakça

  • Ahmed, M.S. (2021) “Designing of internet of things for real time system,” Materials Today: Proceedings [Preprint]. doi:10.1016/j.matpr.2021.03.527.
  • Choi, W. et al. (2021) “Smart home and internet of things: A bibliometic study,” Journal of Cleaner Production, 301, p. 126908. doi:10.1016/j.jclepro.2021.126908.
  • Ericsson (2020) Ericsson Mobility Report.
  • Gupta, K. and Shukla, S. (2016) “Internet of Things: Security challenges for next generation networks,” in 2016 1st International Conference on Innovation and Challenges in Cyber Security, ICICCS 2016. Institute of Electrical and Electronics Engineers Inc., pp. 315–318. doi:10.1109/ICICCS.2016.7542301.
  • Hussein, M., Zorkany, M. and Abdel Kader, N.S. (2018) “Design and Implementation of IoT Platform for Real Time Systems,” in Advances in Intelligent Systems and Computing. Springer Verlag, pp. 171–180. doi:10.1007/978-3-319-74690-6_17.
  • Lawal, M.A., Shaikh, R.A. and Hassan, S.R. (2021) “A DDoS Attack Mitigation Framework for IoT Networks using Fog Computing,” Procedia Computer Science, 182, pp. 13–20. doi:10.1016/j.procs.2021.02.003.
  • Mohammadi, M. et al. (2018) “Deep learning for IoT big data and streaming analytics: A survey,” IEEE Communications Surveys and Tutorials. Institute of Electrical and Electronics Engineers Inc., pp. 2923–2960. doi:10.1109/COMST.2018.2844341.
  • Okegbile, S.D. and Ogunranti, O.I. (2020) “Users emulation attack management in the massive internet of things enabled environment,” ICT Express, 6(4), pp. 353–356. doi:10.1016/j.icte.2020.06.005.
  • Shafiq, M. et al. (2020) “IoT malicious traffic identification using wrapper-based feature selection mechanisms,” Computers and Security, 94, p. 101863. doi:10.1016/j.cose.2020.101863.
  • Srinadh, V. et al. (2021) “An analytical study on security and future research of Internet of Things,” Materials Today: Proceedings [Preprint]. doi:10.1016/j.matpr.2020.12.342.
  • Yavuz, F.Y. (2018) Deep Learning in Cyber Security for Internet of Things, Yüksek Lisans Tezi, Istanbul City University.
  • Zhang, C. and Green, R. (2015) “Communication security in internet of thing: Preventive measure and avoid DDoS attack over IoT network,” Simulation Series, 47(3), pp. 8–15.
Toplam 12 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Bilgisayar Yazılımı
Bölüm Araştırma Makalesi
Yazarlar

Rojbin Tekin 0000-0002-1346-5929

Orhan Yaman 0000-0001-9623-2284

Proje Numarası TEKF.21.18
Erken Görünüm Tarihi 22 Ağustos 2023
Yayımlanma Tarihi 23 Eylül 2023
Gönderilme Tarihi 17 Şubat 2022
Yayımlandığı Sayı Yıl 2023 Cilt: 6 Sayı: 2

Kaynak Göster

APA Tekin, R., & Yaman, O. (2023). Akıllı Ev Sistemleri için XGBoost Tabanlı Saldırı Tespit Yöntemi. Journal of Intelligent Systems: Theory and Applications, 6(2), 152-158. https://doi.org/10.38016/jista.1075054
AMA Tekin R, Yaman O. Akıllı Ev Sistemleri için XGBoost Tabanlı Saldırı Tespit Yöntemi. jista. Eylül 2023;6(2):152-158. doi:10.38016/jista.1075054
Chicago Tekin, Rojbin, ve Orhan Yaman. “Akıllı Ev Sistemleri için XGBoost Tabanlı Saldırı Tespit Yöntemi”. Journal of Intelligent Systems: Theory and Applications 6, sy. 2 (Eylül 2023): 152-58. https://doi.org/10.38016/jista.1075054.
EndNote Tekin R, Yaman O (01 Eylül 2023) Akıllı Ev Sistemleri için XGBoost Tabanlı Saldırı Tespit Yöntemi. Journal of Intelligent Systems: Theory and Applications 6 2 152–158.
IEEE R. Tekin ve O. Yaman, “Akıllı Ev Sistemleri için XGBoost Tabanlı Saldırı Tespit Yöntemi”, jista, c. 6, sy. 2, ss. 152–158, 2023, doi: 10.38016/jista.1075054.
ISNAD Tekin, Rojbin - Yaman, Orhan. “Akıllı Ev Sistemleri için XGBoost Tabanlı Saldırı Tespit Yöntemi”. Journal of Intelligent Systems: Theory and Applications 6/2 (Eylül 2023), 152-158. https://doi.org/10.38016/jista.1075054.
JAMA Tekin R, Yaman O. Akıllı Ev Sistemleri için XGBoost Tabanlı Saldırı Tespit Yöntemi. jista. 2023;6:152–158.
MLA Tekin, Rojbin ve Orhan Yaman. “Akıllı Ev Sistemleri için XGBoost Tabanlı Saldırı Tespit Yöntemi”. Journal of Intelligent Systems: Theory and Applications, c. 6, sy. 2, 2023, ss. 152-8, doi:10.38016/jista.1075054.
Vancouver Tekin R, Yaman O. Akıllı Ev Sistemleri için XGBoost Tabanlı Saldırı Tespit Yöntemi. jista. 2023;6(2):152-8.

Zeki Sistemler Teori ve Uygulamaları Dergisi