Araştırma Makalesi
BibTex RIS Kaynak Göster

Toplu Ulaşım Sisteminde Sürücü Tanıma Sistemi: Türkiye Taksi Örneği

Yıl 2024, Cilt: 7 Sayı: 2, 242 - 262, 22.10.2024
https://doi.org/10.51513/jitsa.1550015

Öz

Kentsel alanlarda, özellikle büyük metropollerde, toplu ulaşım sistemleri sürdürülebilir kentsel gelişimin ve yaşam kalitesinin temel bileşenlerinden biridir. Dijital çağın getirdiği teknolojik ilerlemeler, bu sistemlerin etkinliğini ve verimliliğini artırmada kritik bir rol oynamaktadır. Bu bağlamda, Akıllı Ulaşım Sistemleri (AUS), kentsel ulaşım ağlarının optimizasyonunda giderek daha fazla önem kazanmaktadır. Toplu ulaşımın çeşitli modları arasında, taksiler özellikle kısa mesafeli, kapıdan kapıya ve bireyselleştirilmiş seyahat talepleri açısından önemli bir boşluğu doldurmaktadır. Ancak, birçok büyük şehirde taksi hizmetleriyle ilgili çeşitli sorunlar gözlemlenmektedir. Bu sorunlar arasında güvenlik endişeleri, ödeme anlaşmazlıkları ve hizmet kalitesiyle ilgili şikayetler ön plana çıkmaktadır. Sistem tasarımı, fiziksel testlerle doğrulanmış ve bir yüksek lisans tezi kapsamında detaylı olarak incelenmiştir. Geliştirilen sürücü tanıma sistemi, Türkiye'de ilk olma özelliğini taşımakla birlikte, global ölçekte de benzersiz özelliklere sahiptir. Sistemin temel hedefleri arasında sürücü güvenliğinin artırılması, yolcu-sürücü anlaşmazlıklarının minimize edilmesi ve taksi hizmet kalitesinin yükseltilmesi yer almaktadır. Bu amaçlara ulaşmak için, sistem içerisinde acil durum bildirimi, taksi durumunun (boş/dolu/rezerve) dinamik gösterimi gibi yenilikçi özellikler yer almaktadır. Önerilen Taksi Sürücü Sistemi Modeli hem akademik literatüre katkı sağlamayı hem de sektörel uygulamalara yol göstermeyi hedefleyerek New York, Londra, Tokyo, Paris ve İstanbul gibi büyük hacimli taksiye sahip metropollerin ihtiyaçlarına cevap verebilecek şekilde tasarlanmıştır. Bu çalışma, toplu ulaşımda akıllı sistemlerin entegrasyonu konusunda yeni bir perspektif sunmakta ve gelecekteki araştırmalar için verimli bir zemin hazırlamaktadır. Ayrıca, önerilen modelin diğer toplu ulaşım araçlarına uyarlanabilirliği, araştırmanın potansiyel etkisini genişletmektedir.

Kaynakça

  • Bansal, P., Kockelman, K. M., ve Shaheen, S. A. (2019). Ridesourcing's travel impacts: Evidence from the Austin Transportation Survey. Transportation Research Part C: Emerging Technologies, 107, 245-259.
  • Beijing Municipal Commission of Transport. (2020). Beijing Statistical Yearbook 2020. Beijing Municipal Commission of Transport.
  • Brihanmumbai Electric Supply and Transport. (2020). BEST Annual Report 2019-20. Brihanmumbai Electric Supply and Transport.
  • Cervero, R., ve Murakami, J. (2020). Transit-oriented development and the shaping of sustainable urban mobility in the US and Japan. Transport Reviews, 40(1), 19-37.
  • Kartal, B.; Tektaş, M. & Tektaş, N. (2024) Akıllı Ulaşım Sistemleri ve Uygulamaları Dergisi Cilt:7 – Sayı:2 261
  • Chu, J., Li, P., Zhang, X., ve Yang, L. (2019). A comprehensive review of driver monitoring systems: Current developments and future perspectives. IEEE Transactions on Intelligent Vehicles, 4(3), 363-378.
  • Clewlow, R. R., ve Zhu, Z. (2019). Ride-hailing impacts on vehicle ownership and usage: Evidence from the Austin Transportation Survey. Transportation, 46(6), 2229-2252.
  • Cohen, S. A., ve Gössling, S. (2015). A darker side of destination branding: The exploitation of the taxi driver workforce in developing countries. Journal of Destination Marketing ve Management, 4(3), 144-150.
  • Drahansky, M., Safarik, J., ve Brezinova, E. (2017). Biometric identification using hand geometry. IFAC-PapersOnLine, 50(1), 518-523.
  • Frenken, K., ve Boschma, R. A. (2007). A theoretical framework for evolutionary economic geography: Industrial dynamics and urban growth as a branching process. Journal of Economic Geography, 7(5), 635-649.
  • Geurs, K. T., ve Van Wee, B. (2004). Accessibility evaluation of land-use and transport strategies: Review and research directions. Journal of Transport Geography, 12(2), 127-140.
  • Guo, G., Zhang, N., Mu, G., ve Fang, Y. (2016). A deep learning based face recognition system for intelligent access control. In 2016 IEEE International Conference on Mechatronics and Automation (ICMA) (pp. 2466-2471).
  • Huang, X., Xu, Z., Wang, Y., ve Wang, Z. (2018). Research on intelligent vehicle driver recognition system based on face and speech recognition. In 2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC) (pp. 1501-1506).
  • İstanbul Ticaret Odası. (2020). İstanbul Ekonomik Raporu 2020. İstanbul Ticaret Odası. Jain, A. K., Ross, A., ve Nandakumar, K. (2016). Introduction to biometrics. Springer.
  • Jin, Y., Wang, F., Erhardt, G. D., Burns, L. D., ve Newell, G. F. (2019). Welfare impacts of ridehailing–taxi competition. Transportation Research Part A: Policy and Practice, 121, 108-125.
  • LeCun, Y., Bengio, Y., ve Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444.
  • Li, S. Z., ve Jain, A. K. (Eds.). (2011). Handbook of face recognition. Springer.
  • Litman, T. (2021). Evaluating Transportation Equity. Victoria Transport Policy Institute.
  • Loukaitou-Sideris, A., ve Banerjee, T. (2004). Retracking the urban: Public space, urban design, and culture. Routledge.
  • Moscow Department of Transport. (2020). Moscow Transport in Figures 2020. Moscow Department of Transport.
  • New York City Taxi and Limousine Commission. (2020). 2020 TLC Fact Book. New York City Taxi and Limousine Commission.
  • OECD. (2019). Taxi regulation in OECD countries. OECD Publishing.
  • Kartal, B.; Tektaş, M. & Tektaş, N. (2024) Akıllı Ulaşım Sistemleri ve Uygulamaları Dergisi Cilt:7 – Sayı:2 262
  • Ohm, P. (2010). Broken promises of privacy: Responding to the surprising failure of anonymization. UCLA Law Review, 57, 1701.
  • Pal, S., Nunez, J. C., Wang, Y., ve Bian, Z. (2020). Driver attention monitoring system using computer vision and machine learning. IEEE Transactions on Intelligent Transportation Systems, 21(6), 2450-2462.
  • Préfecture de Police. (2020). Les taxis parisiens. Préfecture de Police. Retrieved from https://www.prefecturedepolice.interieur.gouv.fr/Demarches-et-documents/Professionnels/Taxis/Lestaxis-parisiens
  • Ratha, N. K., Connell, J. H., ve Bolle, R. M. (2001). Enhancing security and privacy in biometricsbased authentication systems. IBM Systems Journal, 40(3), 614-634.
  • Rayle, L., Shaheen, S., Chan, N. D., Dai, D., ve Cervero, R. (2016). App-based, on-demand ride services: Comparing taxi and ridesourcing trips and user characteristics in San Francisco. Transportation Research Record, 2593(1), 118-126.
  • Reynolds, D. A., Rose, R. C., ve Quatieri, T. F. (2000). Speaker verification using adapted Gaussian mixture models. Digital Signal Processing, 10(1-3), 19-41.
  • Santos, G., Behrendt, H., Maconi, L., Teytelboym, A., ve Rich, J. (2019). The geography of ridehailing: Demand, regulation and the organization of work in the taxi industry. Journal of Transport Geography, 74, 225-236.
  • Schroff, F., Kalenichenko, D., ve Philbin, J. (2015). Facenet: A unified embedding for face recognition and clustering. In Proceedings of the IEEE conference on computer vision and pattern recognition, 815-823.
  • Shaheen, S. A., Chan, N. D., Bansal, P., ve Cohen, A. P. (2018). Shared mobility: Current practices and guiding principles. International Transport Forum Discussion Paper, No. 2018/17, OECD Publishing.
  • Tektaş, N. veTektaş,M. (2022). Millî Teknoloji Hamlesi. Ulaşımda Milli Teknoloji Hamlesi: Akıllı Ulaşım Sistemleri. Kacır, M. F., Şeker, M., Doğrul, M. https://tuba.gov.tr/tr/yayinlar/suresizyayinlar/bilim-ve-dusunce/mill-teknoloji-hamlesi/ulasimda-milli-teknoloji-hamlesi-akilli-ulasimsistemleri
  • Tokyo Metropolitan Government. (2020). Tokyo Statistical Yearbook 2020. Tokyo Metropolitan Government.
  • Tokyo Century Corporation. (2020). Anzen Enshin Taxi System. https://www.tokyocentury.co.jp/
  • Transport for London. (2020). Taxi and private hire vehicle statistics. Transport for London.
  • Vuchic, V. R. (2017). Urban transit: Operations, planning, and economics. John Wiley ve Sons.
  • Yang, H., Ye, J., ve Ma, T. (2018). Taxi service system: A comprehensive review and prospects. Transportation Research Part C: Emerging Technologies, 95, 589-612.
  • Zhao, W., Chellappa, R., Phillips, P. J., ve Rosenfeld, A. (
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Ulaşım ve Trafik, Otonom Araç Sistemleri
Bölüm Makaleler
Yazarlar

Bilal Kartal 0000-0003-1457-7815

Mehmet Tektaş 0000-0001-9564-8069

Necla Tektaş 0000-0002-8190-4532

Erken Görünüm Tarihi 18 Ekim 2024
Yayımlanma Tarihi 22 Ekim 2024
Gönderilme Tarihi 14 Eylül 2024
Kabul Tarihi 8 Ekim 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 7 Sayı: 2

Kaynak Göster

APA Kartal, B., Tektaş, M., & Tektaş, N. (2024). Toplu Ulaşım Sisteminde Sürücü Tanıma Sistemi: Türkiye Taksi Örneği. Akıllı Ulaşım Sistemleri Ve Uygulamaları Dergisi, 7(2), 242-262. https://doi.org/10.51513/jitsa.1550015