Yıl 2022,
, 99 - 119, 17.03.2023
Hasan Kolaylı
,
Muhammet Oğuz Sünnetci
,
Hakan Ersoy
,
Murat Karahan
Kaynakça
- Abdulagatova, Z.Z., Kallaev, S.N., Omarov, Z.M., Bakmaev, A.G., Grigor’Ev, B.A., Abdulagatov, I.M., (2020). Temperature effect on thermal- diffusivity and heat-capacity and derived values of thermal-conductivity of reservoir rock materials. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 6, 1-23. https:// doi.org/10.1007/s40948-019-00131-2
- ASTM, (2008). D2845–08 standard test method for laboratory determination of pulse velocities and ultrasonic elastic constants of rock. West Conshohocken: ASTM International
- Biró, A., Hlavićka, V., Lublóy, É., (2019). Effect of fire-related temperatures on natural stones. Construction and Building Materials, 212, 92-101. https://doi.org/10.1016/j. conbuildmat.2019.03.333
- Browning, J., Meredith, P., Gudmundsson, A., (2016). Cooling-dominated cracking in thermally stressed volcanic rocks. Geophysical Research Letters, 43, 8417-8425. https://doi. org/10.1002/2016GL070532
- Chen, Y., Zhang, C., Zhao, Z., Zhao, X., (2020). Shear behavior of artificial and natural granite fractures after heating and water-cooling treatment. Rock Mechanics and Rock Engineering, 53, 5429-5449. https://doi.org/10.1007/s00603-020-02221-0
- Crosby, Z.K., Gullett, P.M., Akers, S.A., Graham, S.S., (2018). Characterization of the mechanical behavior of Salem limestone containing thermally-induced microcracks. International Journal of Rock Mechanics and Mining Sciences, 101, 54–62. https://doi.org/10.1016/j. ijrmms.2017.11.002
- Emirov, S.N., Aliverdiev, A.A., Zarichnyak, Y.P., Emirov, R.M., (2021). Studies of the effective thermal conductivity of sandstone under high pressure and temperature. Rock Mechanics and Rock Engineering, 54, 3165-3174. https://doi. org/10.1007/s00603-020-02353-3
- EN 1991-1-2, (2002). Eurocode 1: Actions on structures - Part 1-2: General actions - Actions on structures exposed to fire. The European Union Per Regulation 305/2011, Directive 98/34/EC, Directive 2004/18/EC
- Ersoy, H., Acar, S., (2016). Influences of petrographic and textural properties on the strength of very strong granitic rocks. Environmental Earth Sciences, 75, 1461. https://doi.org/10.1007/ s1266 5-016-6277-y
- Ersoy, H., Atalar, C., Sünnetci, M.O., Kolaylı, H., Karahan, M., Ersoy, A.F., (2021). Assessment of damage on geo-mechanical and micro-structural properties of weak calcareous rocks exposed to fires using thermal treatment coefficient. Engineering Geology, 284, 106046. https://doi. org/10.1016/j.enggeo.2021.106046
- Ersoy, H., Karahan, M., Kolaylı, H., Sünnetci, M.O., (2021). Influence of mineralogical and micro- structural changes on the physical and strength properties of post-thermal-treatment clayey rocks. Rock Mechanics and Rock Engineering, 54, 679-694. https://doi.org/10.1007/s00603-020-02282-1
- Ersoy, H., Kolaylı, H., Karahan, M., Harputlu Karahan, H., Sünnetci, M.O., (2019). Effect of thermal damage on mineralogical and strength properties of basic volcanic rocks exposed to high temperatures. Bulletin of Engineering Geology and the Environment, 78, 1515–1525. https://doi.org/10.1007/s10064-017-1208-z
- Feng, G., Wang, X., Kang, Y., Zhang, Z., (2020). Effect of thermal cycling-dependent cracks on physical and mechanical properties of granite for enhanced geothermal system. International Journal of Rock Mechanics and Mining Sciences, 134, 104476. https://doi.org/10.1016/j. ijrmms.2020.104476
- Han, G., Jing, H., Su, H., Liu, R., Yin, Q., Wu, J., (2019). Effects of thermal shock due to rapid cooling on the mechanical properties of sandstone. Environmental Earth Sciences, 78, 146. https://doi.org/10.1007/s12665-019-8151-1
- ISO, (1999). ISO 834: Fire resistance tests-elements of building construction. International Organization for Standardization, Geneva, Switzerland
- ISRM, (1978). Suggested methods for determining tensile strength of rock materials. Suggested method for determining indirect tensile strength by Brazilian test. Commission on Standardization of Laboratory and Field Tests. Z.T. Bieniawski and I. Haweks. International Journal of Rock Mechanics and Mining Sciences, 15, 102–103
- ISRM, (2007). The complete ISRM suggested methods for rock characterization, testing and monitoring: 1974–2006. Suggested methods prepared by the commission on testing methods. In: Ulusay R, Hudson JA, eds. Compilation arranged by the ISRM Turkish National Group. Ankara, Turkey
- Johnston, J., (1910). The Thermal Dissociation of Calcium Carbonate. Journal of the American Chemical Society, 32, 938-946
- Kara, I.B., (2021). Effects of cooling regimes on limestone rock and concrete with limestone aggregates at elevated temperatures. International Journal of Rock Mechanics and Mining Sciences, 138, 104618. https://doi.org/10.1016/j. ijrmms.2021.104618
- Kim, K., Kemeny, J., Nickerson, M., (2019). Effect of rapid thermal cooling on mechanical rock properties. Rock Mechanics and Rock Engineering, 47, 2005-2019. https://doi. org/10.1007/s00603-013-0523-3
- Kumari, W.G.P., Ranjith, P.G., Perera, M.S.A., Chen, B.K., Abdulagatov, I.M., (2017). Temperature- dependent mechanical behaviour of Australian Strathbogie granite with different cooling treatments. Engineering Geology, 229, 31-44. https://doi.org/10.1016/j.enggeo.2017.09.012
- Kunze, G.W., (1965). Pretreatment for mineralogical analysis. In: Black CA, ed. Methods of Soil Analysis, Part I. Physical and Mineralogical Properties Including Statistics of Measurement and Sampling. American Society of Agronomy, Madison WI; 568–577
- Li, Q., Yin, T., Li, X., Zhang, S., (2020). Effects of rapid cooling treatment on heated sandstone: a comparison between water and liquid nitrogen cooling. Bulletin of Engineering Geology and the Environment, 79, 313–327. https://doi. org/10.1007/s10064-019-01571-6
- Li, Z., Fortin, J., Nicolas, A., Deldicque, D., Gueguen, Y., (2019). Physical and mechanical properties of thermally cracked andesite under pressure. Rock Mechanics and Rock Engineering, 52, 3509–3529. https://doi.org/10.1007/s0060 3-019-01785-w
- Li, Z.W., Long, M.C., Feng, X.T., Zhang, Y.J., (2021). Thermal damage effect on the thermal conductivity inhomogeneity of granite. International Journal of Rock Mechanics and Mining Sciences, 138, 104583. https://doi. org/10.1016/j.ijrmms.2020.104583
- Liu, S., Xu, J., (2015). An experimental study on the physico-mechanical properties of two post-high-temperature rocks. Engineering Geology, 185, 63-70. https://doi.org/10.1016/j. enggeo.2014.11.013
- Meng, Q.B., Zhang, M.W., Han, L.J., Pu, H., Chen, Y.L., (2019). Experimental research on influence of loading rate on mechanical properties of limestone in high temperature state. Bulletin of Engineering Geology and the Environment, 78, 3479–3492. https://doi.org/10.1007/s10064- 018-1332-4
- Meng, T., Yongbing, X., Ma, J., Yue, Y., Liu, W., Zhang, J., Erbing, L., (2021). Evolution of permeability and microscopic pore structure of sandstone and its weakening mechanism under coupled thermo- hydro-mechanical environment subjected to real-time high temperature. Engineering Geology, 280, 105955. https://doi.org/10.1016/j. enggeo.2020.105955
- Nasseri, M.H.B., Goodfellow, S.D., Wanne, T., Young, R.P., (2013). Thermo-hydro-mechanical properties of Cobourg limestone. International Journal of Rock Mechanics and Mining Sciences, 61, 212-222. https://doi.org/10.1016/j. ijrmms.2013.03.004
- Pei, L., Blöcher, G., Milsch, H., Zimmermann, G., Sass, I., Huenges, E., (2018). Thermo- mechanical Properties of Upper Jurassic (Malm) Carbonate Rock Under Drained Conditions. Rock Mechanics and Rock Engineering, 51, 23– 45. https://doi.org/10.1007/s00603-017- 1313-0
- Popov, Y., Beardsmore, G., Clauser, C., Roy, S., (2016). ISRM suggested methods for determining thermal properties of rocks from laboratory tests at atmospheric pressure. Rock Mechanics and Rock Engineering, 49, 4179-4207. https://doi. org/10.1007/s00603-016-1070-5
- Rong, G., Sha, S., Li, B., Chen, Z., Zhang, Z., (2021). Experimental investigation on physical and mechanical properties of granite subjected to cyclic heating and liquid nitrogen cooling. Rock Mechanics and Rock Engineering, 54, 2383-2403. https://doi.org/10.1007/s00603-021-02390-6
- Rosenholtz, J.L., Smith, D.T., (1949). Linear thermal expansion of calcite, var. Iceland spar, and Yule Marble. American Mineralogist, 34, 846-854
- Sha, S., Rong, G., Chen, Z., Li, B., Zhang, Z., (2020). Experimental evaluation of physical and mechanical properties of geothermal reservoir rock after different cooling treatments Rock Mechanics and Rock Engineering, 53, 4967-4991.https://doi.org/10.1007/s00603-020-02200-5
- Sha, S., Rong, G., Peng, J., Li, B., Wu, Z., (2019). Effect of open-fire-induced damage on Brazilian tensile strength and microstructure of granite. Rock Mechanics and Rock Engineering, 52, 4189-4202. https://doi.org/10.1007/s00603- 019-01871-z
- Shao, Z., Wang, Y., Tang, X., (2020. The influences of heating and uniaxial loading on granite subjected to liquid nitrogen cooling. Engineering Geology, 271, 105614. https://doi.org/10.1016/j. enggeo.2020.105614
- Shen, Y., Hou, X., Yuan, J., Xu, Z., Hao, J., Gu, L., Liu, Z., (2020). Thermal deterioration of high- temperature granite after cooling shock: multiple- identification and damage mechanism. Bulletin of Engineering Geology and the Environment, 79, 5385-5398. https://doi.org/10.1007/s10064-020-01888-7
- Villarraga, C.J., Gasc-Barbier, M., Vaunat, J., Darrozes, J., (2018). The effect of thermal cycles on limestone mechanical degradation. International Journal of Rock Mechanics and Mining Sciences, 109, 115-123. https://doi. org/10.1016/j.ijrmms.2018.06.017.
- Wang, F., Konietzky, H., Frühwirt, T., Li, Y., Dai, Y., (2019). Impact of cooling on fracturing process of granite after high-speed heating. International Journal of Rock Mechanics and Mining Sciences, 125, 104155. https://doi.org/10.1016/j. ijrmms.2019.104155
- Wang, P., Xu, J., Liu, S., (2015). Staged moduli: a quantitative method to analyze the complete compressive stress–strain response for thermally damaged rock. Rock Mechanics and Rock Engineering, 48, 1505–1514. https://doi. org/10.1007/s00603-014-0648-z
- Wang, Z., Zhang, W., Shi, Z., Zhang, S., (2022). Changes of physical properties of thermal damaged sandstone with time lapse. Acta Geophysica, 2022, 1-10. https://doi.org/10.1007/ s11600-022-00782-y
- Whitney, D., Evans, B., (2010). Abbreviations for Names of Rock-Forming Minerals. American Mineralogist, 95, 185-187. https://doi. org/10.2138/am.2010.3371
- Wu, X., Huang, Z., Song, H., Zhang, S., Cheng, Z., Li, R., Wen, H.T., Huang, P.P., Dai, X.W., (2019). Variations of physical and mechanical properties of heated granite after rapid cooling with liquid nitrogen. Rock Mechanics and Rock Engineering, 52, 2123-2139. https://doi. org/10.1007/s00603-018-1727-3
- Wu, X., Huang, Z., Zhang, S., Cheng, Z., Li, R., Song, H., Wen, H.T., Huang, P., (2019). Damage analysis of high-temperature rocks subjected to LN2 thermal shock. Rock Mechanics and Rock Engineering, 52, 2585-2603. https://doi. org/10.1007/s00603-018-1711-y
- Zhang, F., Zhang, Y., Yu, Y., Hu, D., Shao, J., (2020). Influence of cooling rate on thermal degradation of physical and mechanical properties of granite. International Journal of Rock Mechanics and Mining Sciences, 129, 104285. https://doi. org/10.1016/j.ijrmms.2020.104285
- Zhang, F., Zhao, J., Hu, D., Skoczylas, F., Shao, J., (2018). Laboratory investigation on physical and mechanical properties of granite after heating and water-cooling treatment. Rock Mechanics and Rock Engineering, 51, 677-694. https://doi. org/10.1007/s00603-017-1350-8
- Zhang, W., Qian, H., Sun, Q., Chen, Y., (2015). Experimental study of the effect of high temperature on primary wave velocity and microstructure of limestone. Environmental Earth Sciences, 74, 5739–5748. https://doi. org/10.1007/s12665-015-4591-4
- Zhu, D., Jing, H., Yin, Q., Ding, S., Zhang, J., (2020). Mechanical characteristics of granite after heating and water-cooling cycles. Rock Mechanics and Rock Engineering, 53, 2015-2025. https://doi. org/10.1007/s00603-019-01991-6
Yangın Sonrası Soğuma Koşullarında Karbonat Yapı Taşlarındaki Mineralojik ve Mikro-Yapısal Değişimlerin Değerlendirilmesi
Yıl 2022,
, 99 - 119, 17.03.2023
Hasan Kolaylı
,
Muhammet Oğuz Sünnetci
,
Hakan Ersoy
,
Murat Karahan
Öz
Bu çalışmada yangın sonrası farklı soğutma modellerinin etkisi incelenmiştir. Isıtılan kayaçlar; (1) doğal çevre koşullarını temsil etmek için oda sıcaklığında, (2) soğuk mevsimleri temsil etmek için sıfırın altında ve (3) yangına müdahale senaryosu göz önüne alınarak suda soğumaya maruz bırakılmıştır. Çalışmada yapı taşı olarak sıklıkla kullanılan 3 farklı karbonat kayaç, traverten, mermer ve kireçtaşı kullanılmıştır. Kayaçların mineralojik bileşimlerini ve ısıtma-soğutma işlemlerinden sonra mineralojik değişimleri belirlemek için ince kesit incelemeleri ve XRD analizleri yapılmış, mikro-kırık gelişimini ortaya çıkarmak amacıyla SEM görüntüleri kullanılmış, fiziksel ve dayanım özelliklerindeki değişimleri belirlemek için jeomekanik deneyler uygulanmıştır. Soğuma sonrasında, yeni mikro-çatlakların oluşumundan ziyade, mevcut mikro-çatlakların büyüdüğünü görülmüştür. Kayaçların dayanım özellikleri, soğuma süreçlerinden fiziksel özelliklere göre daha fazla etkilenmiş ve en düşük dayanım değerleri suda soğuma sonrası gözlenmiştir. Ani soğuma sonrası traverten ve mermerlerin çekme dayanımı %70-80 arasında azalırken, kil içeren kireçtaşlarında bu değer %30'u geçmemiştir. Sonuçlar, mevcut mikro-çatlakların büyümesi nedeniyle ani soğumanın genellikle yavaş soğumaya göre daha fazla termal hasara neden olduğunu, soğumanın kayaçların termal bozunması üzerinde ısıtmadan daha etkili olduğunu ve kil içeriğine bağlı olarak bu etkinin arttığını göstermektedir.
Kaynakça
- Abdulagatova, Z.Z., Kallaev, S.N., Omarov, Z.M., Bakmaev, A.G., Grigor’Ev, B.A., Abdulagatov, I.M., (2020). Temperature effect on thermal- diffusivity and heat-capacity and derived values of thermal-conductivity of reservoir rock materials. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 6, 1-23. https:// doi.org/10.1007/s40948-019-00131-2
- ASTM, (2008). D2845–08 standard test method for laboratory determination of pulse velocities and ultrasonic elastic constants of rock. West Conshohocken: ASTM International
- Biró, A., Hlavićka, V., Lublóy, É., (2019). Effect of fire-related temperatures on natural stones. Construction and Building Materials, 212, 92-101. https://doi.org/10.1016/j. conbuildmat.2019.03.333
- Browning, J., Meredith, P., Gudmundsson, A., (2016). Cooling-dominated cracking in thermally stressed volcanic rocks. Geophysical Research Letters, 43, 8417-8425. https://doi. org/10.1002/2016GL070532
- Chen, Y., Zhang, C., Zhao, Z., Zhao, X., (2020). Shear behavior of artificial and natural granite fractures after heating and water-cooling treatment. Rock Mechanics and Rock Engineering, 53, 5429-5449. https://doi.org/10.1007/s00603-020-02221-0
- Crosby, Z.K., Gullett, P.M., Akers, S.A., Graham, S.S., (2018). Characterization of the mechanical behavior of Salem limestone containing thermally-induced microcracks. International Journal of Rock Mechanics and Mining Sciences, 101, 54–62. https://doi.org/10.1016/j. ijrmms.2017.11.002
- Emirov, S.N., Aliverdiev, A.A., Zarichnyak, Y.P., Emirov, R.M., (2021). Studies of the effective thermal conductivity of sandstone under high pressure and temperature. Rock Mechanics and Rock Engineering, 54, 3165-3174. https://doi. org/10.1007/s00603-020-02353-3
- EN 1991-1-2, (2002). Eurocode 1: Actions on structures - Part 1-2: General actions - Actions on structures exposed to fire. The European Union Per Regulation 305/2011, Directive 98/34/EC, Directive 2004/18/EC
- Ersoy, H., Acar, S., (2016). Influences of petrographic and textural properties on the strength of very strong granitic rocks. Environmental Earth Sciences, 75, 1461. https://doi.org/10.1007/ s1266 5-016-6277-y
- Ersoy, H., Atalar, C., Sünnetci, M.O., Kolaylı, H., Karahan, M., Ersoy, A.F., (2021). Assessment of damage on geo-mechanical and micro-structural properties of weak calcareous rocks exposed to fires using thermal treatment coefficient. Engineering Geology, 284, 106046. https://doi. org/10.1016/j.enggeo.2021.106046
- Ersoy, H., Karahan, M., Kolaylı, H., Sünnetci, M.O., (2021). Influence of mineralogical and micro- structural changes on the physical and strength properties of post-thermal-treatment clayey rocks. Rock Mechanics and Rock Engineering, 54, 679-694. https://doi.org/10.1007/s00603-020-02282-1
- Ersoy, H., Kolaylı, H., Karahan, M., Harputlu Karahan, H., Sünnetci, M.O., (2019). Effect of thermal damage on mineralogical and strength properties of basic volcanic rocks exposed to high temperatures. Bulletin of Engineering Geology and the Environment, 78, 1515–1525. https://doi.org/10.1007/s10064-017-1208-z
- Feng, G., Wang, X., Kang, Y., Zhang, Z., (2020). Effect of thermal cycling-dependent cracks on physical and mechanical properties of granite for enhanced geothermal system. International Journal of Rock Mechanics and Mining Sciences, 134, 104476. https://doi.org/10.1016/j. ijrmms.2020.104476
- Han, G., Jing, H., Su, H., Liu, R., Yin, Q., Wu, J., (2019). Effects of thermal shock due to rapid cooling on the mechanical properties of sandstone. Environmental Earth Sciences, 78, 146. https://doi.org/10.1007/s12665-019-8151-1
- ISO, (1999). ISO 834: Fire resistance tests-elements of building construction. International Organization for Standardization, Geneva, Switzerland
- ISRM, (1978). Suggested methods for determining tensile strength of rock materials. Suggested method for determining indirect tensile strength by Brazilian test. Commission on Standardization of Laboratory and Field Tests. Z.T. Bieniawski and I. Haweks. International Journal of Rock Mechanics and Mining Sciences, 15, 102–103
- ISRM, (2007). The complete ISRM suggested methods for rock characterization, testing and monitoring: 1974–2006. Suggested methods prepared by the commission on testing methods. In: Ulusay R, Hudson JA, eds. Compilation arranged by the ISRM Turkish National Group. Ankara, Turkey
- Johnston, J., (1910). The Thermal Dissociation of Calcium Carbonate. Journal of the American Chemical Society, 32, 938-946
- Kara, I.B., (2021). Effects of cooling regimes on limestone rock and concrete with limestone aggregates at elevated temperatures. International Journal of Rock Mechanics and Mining Sciences, 138, 104618. https://doi.org/10.1016/j. ijrmms.2021.104618
- Kim, K., Kemeny, J., Nickerson, M., (2019). Effect of rapid thermal cooling on mechanical rock properties. Rock Mechanics and Rock Engineering, 47, 2005-2019. https://doi. org/10.1007/s00603-013-0523-3
- Kumari, W.G.P., Ranjith, P.G., Perera, M.S.A., Chen, B.K., Abdulagatov, I.M., (2017). Temperature- dependent mechanical behaviour of Australian Strathbogie granite with different cooling treatments. Engineering Geology, 229, 31-44. https://doi.org/10.1016/j.enggeo.2017.09.012
- Kunze, G.W., (1965). Pretreatment for mineralogical analysis. In: Black CA, ed. Methods of Soil Analysis, Part I. Physical and Mineralogical Properties Including Statistics of Measurement and Sampling. American Society of Agronomy, Madison WI; 568–577
- Li, Q., Yin, T., Li, X., Zhang, S., (2020). Effects of rapid cooling treatment on heated sandstone: a comparison between water and liquid nitrogen cooling. Bulletin of Engineering Geology and the Environment, 79, 313–327. https://doi. org/10.1007/s10064-019-01571-6
- Li, Z., Fortin, J., Nicolas, A., Deldicque, D., Gueguen, Y., (2019). Physical and mechanical properties of thermally cracked andesite under pressure. Rock Mechanics and Rock Engineering, 52, 3509–3529. https://doi.org/10.1007/s0060 3-019-01785-w
- Li, Z.W., Long, M.C., Feng, X.T., Zhang, Y.J., (2021). Thermal damage effect on the thermal conductivity inhomogeneity of granite. International Journal of Rock Mechanics and Mining Sciences, 138, 104583. https://doi. org/10.1016/j.ijrmms.2020.104583
- Liu, S., Xu, J., (2015). An experimental study on the physico-mechanical properties of two post-high-temperature rocks. Engineering Geology, 185, 63-70. https://doi.org/10.1016/j. enggeo.2014.11.013
- Meng, Q.B., Zhang, M.W., Han, L.J., Pu, H., Chen, Y.L., (2019). Experimental research on influence of loading rate on mechanical properties of limestone in high temperature state. Bulletin of Engineering Geology and the Environment, 78, 3479–3492. https://doi.org/10.1007/s10064- 018-1332-4
- Meng, T., Yongbing, X., Ma, J., Yue, Y., Liu, W., Zhang, J., Erbing, L., (2021). Evolution of permeability and microscopic pore structure of sandstone and its weakening mechanism under coupled thermo- hydro-mechanical environment subjected to real-time high temperature. Engineering Geology, 280, 105955. https://doi.org/10.1016/j. enggeo.2020.105955
- Nasseri, M.H.B., Goodfellow, S.D., Wanne, T., Young, R.P., (2013). Thermo-hydro-mechanical properties of Cobourg limestone. International Journal of Rock Mechanics and Mining Sciences, 61, 212-222. https://doi.org/10.1016/j. ijrmms.2013.03.004
- Pei, L., Blöcher, G., Milsch, H., Zimmermann, G., Sass, I., Huenges, E., (2018). Thermo- mechanical Properties of Upper Jurassic (Malm) Carbonate Rock Under Drained Conditions. Rock Mechanics and Rock Engineering, 51, 23– 45. https://doi.org/10.1007/s00603-017- 1313-0
- Popov, Y., Beardsmore, G., Clauser, C., Roy, S., (2016). ISRM suggested methods for determining thermal properties of rocks from laboratory tests at atmospheric pressure. Rock Mechanics and Rock Engineering, 49, 4179-4207. https://doi. org/10.1007/s00603-016-1070-5
- Rong, G., Sha, S., Li, B., Chen, Z., Zhang, Z., (2021). Experimental investigation on physical and mechanical properties of granite subjected to cyclic heating and liquid nitrogen cooling. Rock Mechanics and Rock Engineering, 54, 2383-2403. https://doi.org/10.1007/s00603-021-02390-6
- Rosenholtz, J.L., Smith, D.T., (1949). Linear thermal expansion of calcite, var. Iceland spar, and Yule Marble. American Mineralogist, 34, 846-854
- Sha, S., Rong, G., Chen, Z., Li, B., Zhang, Z., (2020). Experimental evaluation of physical and mechanical properties of geothermal reservoir rock after different cooling treatments Rock Mechanics and Rock Engineering, 53, 4967-4991.https://doi.org/10.1007/s00603-020-02200-5
- Sha, S., Rong, G., Peng, J., Li, B., Wu, Z., (2019). Effect of open-fire-induced damage on Brazilian tensile strength and microstructure of granite. Rock Mechanics and Rock Engineering, 52, 4189-4202. https://doi.org/10.1007/s00603- 019-01871-z
- Shao, Z., Wang, Y., Tang, X., (2020. The influences of heating and uniaxial loading on granite subjected to liquid nitrogen cooling. Engineering Geology, 271, 105614. https://doi.org/10.1016/j. enggeo.2020.105614
- Shen, Y., Hou, X., Yuan, J., Xu, Z., Hao, J., Gu, L., Liu, Z., (2020). Thermal deterioration of high- temperature granite after cooling shock: multiple- identification and damage mechanism. Bulletin of Engineering Geology and the Environment, 79, 5385-5398. https://doi.org/10.1007/s10064-020-01888-7
- Villarraga, C.J., Gasc-Barbier, M., Vaunat, J., Darrozes, J., (2018). The effect of thermal cycles on limestone mechanical degradation. International Journal of Rock Mechanics and Mining Sciences, 109, 115-123. https://doi. org/10.1016/j.ijrmms.2018.06.017.
- Wang, F., Konietzky, H., Frühwirt, T., Li, Y., Dai, Y., (2019). Impact of cooling on fracturing process of granite after high-speed heating. International Journal of Rock Mechanics and Mining Sciences, 125, 104155. https://doi.org/10.1016/j. ijrmms.2019.104155
- Wang, P., Xu, J., Liu, S., (2015). Staged moduli: a quantitative method to analyze the complete compressive stress–strain response for thermally damaged rock. Rock Mechanics and Rock Engineering, 48, 1505–1514. https://doi. org/10.1007/s00603-014-0648-z
- Wang, Z., Zhang, W., Shi, Z., Zhang, S., (2022). Changes of physical properties of thermal damaged sandstone with time lapse. Acta Geophysica, 2022, 1-10. https://doi.org/10.1007/ s11600-022-00782-y
- Whitney, D., Evans, B., (2010). Abbreviations for Names of Rock-Forming Minerals. American Mineralogist, 95, 185-187. https://doi. org/10.2138/am.2010.3371
- Wu, X., Huang, Z., Song, H., Zhang, S., Cheng, Z., Li, R., Wen, H.T., Huang, P.P., Dai, X.W., (2019). Variations of physical and mechanical properties of heated granite after rapid cooling with liquid nitrogen. Rock Mechanics and Rock Engineering, 52, 2123-2139. https://doi. org/10.1007/s00603-018-1727-3
- Wu, X., Huang, Z., Zhang, S., Cheng, Z., Li, R., Song, H., Wen, H.T., Huang, P., (2019). Damage analysis of high-temperature rocks subjected to LN2 thermal shock. Rock Mechanics and Rock Engineering, 52, 2585-2603. https://doi. org/10.1007/s00603-018-1711-y
- Zhang, F., Zhang, Y., Yu, Y., Hu, D., Shao, J., (2020). Influence of cooling rate on thermal degradation of physical and mechanical properties of granite. International Journal of Rock Mechanics and Mining Sciences, 129, 104285. https://doi. org/10.1016/j.ijrmms.2020.104285
- Zhang, F., Zhao, J., Hu, D., Skoczylas, F., Shao, J., (2018). Laboratory investigation on physical and mechanical properties of granite after heating and water-cooling treatment. Rock Mechanics and Rock Engineering, 51, 677-694. https://doi. org/10.1007/s00603-017-1350-8
- Zhang, W., Qian, H., Sun, Q., Chen, Y., (2015). Experimental study of the effect of high temperature on primary wave velocity and microstructure of limestone. Environmental Earth Sciences, 74, 5739–5748. https://doi. org/10.1007/s12665-015-4591-4
- Zhu, D., Jing, H., Yin, Q., Ding, S., Zhang, J., (2020). Mechanical characteristics of granite after heating and water-cooling cycles. Rock Mechanics and Rock Engineering, 53, 2015-2025. https://doi. org/10.1007/s00603-019-01991-6