Araştırma Makalesi
BibTex RIS Kaynak Göster

A Comparative Assessment of the Second Degree Asperity Angles of Discontinuities

Yıl 2024, Cilt: 48 Sayı: 1, 43 - 58, 26.06.2024
https://doi.org/10.24232/jmd.1479534

Öz

The engineering behavior of rock masses is controlled more by the strength of the discontinuity surfaces than by the strength of the intact rock. Asperity angles play a very important role in the shear strength of discontinuity surfaces. The strength of discontinuity surfaces can be determined by direct shear tests in the laboratory. However, it is not always possible to obtain suitable discontinuity surfaces from natural discontinuities in the field and place them in the shear test device. In this study, in addition to direct shear tests on 9 different rocks, basic friction angles (b) were determined with a tiltmeter device and the second degree asperity angles (i) on the discontinuity surfaces were determined with an electromechanical profilometer device. From these two values, the total friction angles were obtained (t = b + i). These values were compared with the results of b and t obtained from Patton’s bilinear failure envelope by direct shear tests under different normal stresses and their compatibility was evaluated. It was determined that the failure envelopes obtained from direct shear tests performed at different normal stress levels comply with the Patton bi-linear failure model for all 9 specimens. According to the results obtained, when the basic friction angles and total friction angles obtained from direct shear tests were compared with the values obtained from profilometer and tiltmeter tests; it was determined that the basic friction angles were in a very high level of agreement for all 9 rocks tested (R2 = 0.91). Total friction angles can be obtained with high accuracy except for two rocks (granodiorite and marble) with high strength (R2 = 0.86). It was concluded that basic friction angles and total friction angles can also be obtained by profilometer and tiltmeter tests whenever it is not possible to direct shear tests.

Kaynakça

  • Alejano, L. R., González, J. & Muralha, J. (2012). Comparison of Different Techniques of Tilt Testing and Basic Friction Angle Variability Assessment. Rock Mech. Rock Eng. 45(6):1023- 1035. https://doi.org/10.1007/s00603-012-0265-7
  • Barton, N. (1973). Review of a New Shear Strength Criterion for Rock Joints. Engineering Geology. 7:287-332.https://doi.org/10.1016/0013-7952(73)90013-6
  • Brady, B. H. G. & Brown, E. T. (2005). Rock Mechanics for Underground Mining: New York, Kluwer Academic Publishers, 628 p.
  • Bruce, I. G., Cruden, D. M. & Eaton, T. M. (1989). Use of a Tilting Table to Determine the Basic Friction Angle of Hard Rock Samples. Can. Geotech. J. 26:474-479. https://doi.org/10.1139/ t89-060
  • Coulomb, C. A. (1776). Essai sur une application des regles de maximis et minimis quelques problemes de statique, relatits a l’architecture. Memoires de Mathematique de l’Academie Royale de Science 7, Paris.
  • Cruden, D. M. & Hu, X. Q. (1988). Basic Friction Angles of Carbonate Rocks from Kananaskis County, Canada. Bull. Int. Assoc. Eng. Geol. 38(1):55-59. https://doi.org/10.1007/ BF02590448
  • González, J., González-Pastoriza, N., Castro, U., Alejano, L. R. & Muralha, J. (2014). Considerations on the Laboratory Estimate of the Basic Friction Angle of Rock Joints. In: Alejano R, Perucho A, Olalla C, Jimenez R. (eds) Rock eng. and rock mech: structures in and on rock masses (EUROCK 2014), ISRM Eu Reg. Symp, Vigo, pp 199-204. https://doi.org/10.1201/ b16955-31
  • Goodman, R. E. (1970). The Deformability of Joints. In Determination of the In Situ Modulus of Deformation of Rock. Am. Soc. Testing and Materials, Spec. Tech. Publication, No. 477, 174-96. https://doi.org/10.1520/STP477-EB
  • Habibzadeh, F. (2020). Süreksizliklerin Statik ve Dinamik Koşullardaki Kesme Dayanımının Yapay Süreksizlikler Yoluyla Karşılaştırılması. Ankara Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi. 185s.
  • Hoek, E. (2023). Practical Rock Engineering. (https:// www.rocscience.com/assets/resources/learning/ hoek/Practical-Rock-Engineering-Full-Text. pdf)
  • Horn, H. M. & Deere D. U. (1962). Frictional Characteristics of Minerals. Géotechnique 12:319-335.https://doi.org/10.1680/ geot.1962.12.4.319
  • Jang, H. S., Zhang, Q. Z., Kang, S. S. & Jang, B. O. (2018). Determination of the Basic Friction Angle of Rock Surfaces by Tilt Tests. Rock Mech Rock Eng 51, 989-1004. https://doi.org/10.1007/ s00603-017-1388-7
  • Mohr, O. (1900). Welche Umstände Bedingen die Elastizitätsgrenze und den Bruch eines Materials? Zeitschrift des Vereines Deutscher Ingenieure, 44, pp. 1-12.
  • Patton, F. D. (1966). Multiple Modes of Shear Failure in Rock and Related Material. Ph.D. Thesis, University of Illinois, p 282.
  • Paulding, B. W. Jr. (1970). Coefficient of Friction of Natural Rock Surfaces. Proc. ASCE. Soil Mech. Foundation Div., Vol. 96 (SM2), 385-94. https:// doi.org/10.1061/JSFEAQ.0001393
  • Poropat, G. V. (2008). Remote Characterization of Surface Roughness of Rock Discontinuities. In Y. Potvin, J. Carter, A. Dyskin, &R. Jeffery (eds.), Proceedings 1st Southern Hemisphere International Rock Mechanics Symposium, Perth, Australia, 16-19 September 2008: 447-458. https://doi.org/10.36487/ACG_repo/808_123
  • Rengers, N. (1971). Roughness and Friction Properties of Separation Planes in Rock. Thesis, Tech. Hoch-schule Fredericiana, Karlsruhe, Inst. Bodenmech. Felsmech. Veroff, 47, 129 pp.
  • Ruiz, J. & Li, C. (2014). Measurement of the Basic Friction Angle of Rock by Three Different Tilt Test Methods. In: Alejano R, Perucho A, Olalla C, Jimenez R (eds) Rock eng and rock mech: structures in and on rock masses (EUROCK 2014), ISRM EU reg symp, Vigo, pp 261-266. https://doi.org/10.1201/b16955-42
  • Stimpson, B. (1981). A Suggested Technique for Determining the Basic Friction Angle of Rock Surface using Core. Int J. Rock Mech. Min. Sci. Geomech. Abst. 18(1):63–65. https://doi. org/10.1016/0148-9062(81)90266-7
  • Wines, D. R. & Lilly, P. A. (2003). Estimates of Rock Joint Shear Strength in Part of the Fimiston Open Pit Operation in Western Australia. Int J Rock Mech Min Sci 40(6):929-937. https://doi. org/10.1016/S1365-1609(03)00020-0
  • Wyllie, C. & Mah, W. (2005). Rock Slope Engineering, Civil and Mining, 4th Edition. Taylor & Francis Group, London and New York, 431 p.
  • Zhang, N., Li, C. C., Lu, A., Chen, X., Liu, D. & Zhu, E. (2019). Experimental Studies on the Basic Friction Angle of Planar Rock Surfaces by Tilt Test. ASTM International. J. Test. Eval.. January 2019; 47(1): 256-283. https://doi.org/10.1520/ JTE20170308

Süreksizliklerde İkinci Derece Düzensizlik Açılarının Karşılaştırmalı Değerlendirilmesi

Yıl 2024, Cilt: 48 Sayı: 1, 43 - 58, 26.06.2024
https://doi.org/10.24232/jmd.1479534

Öz

Kaya kütlelerinin mühendislik davranışı, sağlam kayanın dayanımından daha çok süreksizlik yüzeylerinin dayanımı tarafından kontrol edilir. Süreksizlik yüzeylerinin kesme dayanımı üzerinde de pürüzlülük açılarının çok önemli rolü vardır. Süreksizlik yüzeylerinin dayanımı laboratuvarda doğrudan kesme deneyi ile belirlenebilmektedir. Ancak, arazideki doğal süreksizliklerden laboratuvarda kesme deneyi için uygun süreksizlik yüzeyleri elde etmek ve kesme deney cihazına yerleştirmek her zaman mümkün olamamaktadır. Bu çalışmada 9 farklı kaya üzerinde doğrudan kesme deneylerinin yanı sıra tiltmetre düzeneği ile temel sürtünme açıları (fb), elektromekanik profilometre cihazıyla da süreksizlik yüzeylerindeki ikinci derece pürüzlülük açıları (i) belirlenmiştir. Bu iki değerden de toplam sürtünme açıları elde edilmiştir (ft = fb + i). Bu değerler farklı normal gerilmeler altında doğrudan kesme deneyleri yapılarak, Patton çift eğrili yenilme zarfından elde edilen fb ve ft sonuçları ile karşılaştırılmış ve ne derece uyumlu oldukları değerlendirilmiştir. Farklı normal gerilme seviyelerinde gerçekleştirilen doğrudan kesme deneylerinden elde edilen yenilme zarflarının 9 numune için de Patton çift eğrili yenilme modeline uyduğu belirlenmiştir. Elde edilen sonuçlara göre doğrudan kesme deneylerinden elde edilen temel sürtünme açıları ve toplam sürtünme açıları profilometre ve tiltmetre deneylerinden elde edilen değerler ile karşılaştırıldığında; temel sürtünme açılarının toplam test edilen 9 kaya için oldukça yüksek bir uyum içerisinde olduğu belirlenmiştir (R2= 0,91). Toplam sürtünme açılarının ise yüksek dayanıma sahip iki kaya hariç yine yüksek doğruluk seviyesinde elde edilebileceği görülmüştür (R2= 0,86). Doğrudan kesme deneyinin yapılmasına olanak olmadığı durumlarda profilometre ve tiltmetre deneyleri ile de temel sürtünme açısı ve toplam sürtünme açısı değerlerine bir yaklaşımda bulunulabileceği sonucuna varılmıştır.

Kaynakça

  • Alejano, L. R., González, J. & Muralha, J. (2012). Comparison of Different Techniques of Tilt Testing and Basic Friction Angle Variability Assessment. Rock Mech. Rock Eng. 45(6):1023- 1035. https://doi.org/10.1007/s00603-012-0265-7
  • Barton, N. (1973). Review of a New Shear Strength Criterion for Rock Joints. Engineering Geology. 7:287-332.https://doi.org/10.1016/0013-7952(73)90013-6
  • Brady, B. H. G. & Brown, E. T. (2005). Rock Mechanics for Underground Mining: New York, Kluwer Academic Publishers, 628 p.
  • Bruce, I. G., Cruden, D. M. & Eaton, T. M. (1989). Use of a Tilting Table to Determine the Basic Friction Angle of Hard Rock Samples. Can. Geotech. J. 26:474-479. https://doi.org/10.1139/ t89-060
  • Coulomb, C. A. (1776). Essai sur une application des regles de maximis et minimis quelques problemes de statique, relatits a l’architecture. Memoires de Mathematique de l’Academie Royale de Science 7, Paris.
  • Cruden, D. M. & Hu, X. Q. (1988). Basic Friction Angles of Carbonate Rocks from Kananaskis County, Canada. Bull. Int. Assoc. Eng. Geol. 38(1):55-59. https://doi.org/10.1007/ BF02590448
  • González, J., González-Pastoriza, N., Castro, U., Alejano, L. R. & Muralha, J. (2014). Considerations on the Laboratory Estimate of the Basic Friction Angle of Rock Joints. In: Alejano R, Perucho A, Olalla C, Jimenez R. (eds) Rock eng. and rock mech: structures in and on rock masses (EUROCK 2014), ISRM Eu Reg. Symp, Vigo, pp 199-204. https://doi.org/10.1201/ b16955-31
  • Goodman, R. E. (1970). The Deformability of Joints. In Determination of the In Situ Modulus of Deformation of Rock. Am. Soc. Testing and Materials, Spec. Tech. Publication, No. 477, 174-96. https://doi.org/10.1520/STP477-EB
  • Habibzadeh, F. (2020). Süreksizliklerin Statik ve Dinamik Koşullardaki Kesme Dayanımının Yapay Süreksizlikler Yoluyla Karşılaştırılması. Ankara Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi. 185s.
  • Hoek, E. (2023). Practical Rock Engineering. (https:// www.rocscience.com/assets/resources/learning/ hoek/Practical-Rock-Engineering-Full-Text. pdf)
  • Horn, H. M. & Deere D. U. (1962). Frictional Characteristics of Minerals. Géotechnique 12:319-335.https://doi.org/10.1680/ geot.1962.12.4.319
  • Jang, H. S., Zhang, Q. Z., Kang, S. S. & Jang, B. O. (2018). Determination of the Basic Friction Angle of Rock Surfaces by Tilt Tests. Rock Mech Rock Eng 51, 989-1004. https://doi.org/10.1007/ s00603-017-1388-7
  • Mohr, O. (1900). Welche Umstände Bedingen die Elastizitätsgrenze und den Bruch eines Materials? Zeitschrift des Vereines Deutscher Ingenieure, 44, pp. 1-12.
  • Patton, F. D. (1966). Multiple Modes of Shear Failure in Rock and Related Material. Ph.D. Thesis, University of Illinois, p 282.
  • Paulding, B. W. Jr. (1970). Coefficient of Friction of Natural Rock Surfaces. Proc. ASCE. Soil Mech. Foundation Div., Vol. 96 (SM2), 385-94. https:// doi.org/10.1061/JSFEAQ.0001393
  • Poropat, G. V. (2008). Remote Characterization of Surface Roughness of Rock Discontinuities. In Y. Potvin, J. Carter, A. Dyskin, &R. Jeffery (eds.), Proceedings 1st Southern Hemisphere International Rock Mechanics Symposium, Perth, Australia, 16-19 September 2008: 447-458. https://doi.org/10.36487/ACG_repo/808_123
  • Rengers, N. (1971). Roughness and Friction Properties of Separation Planes in Rock. Thesis, Tech. Hoch-schule Fredericiana, Karlsruhe, Inst. Bodenmech. Felsmech. Veroff, 47, 129 pp.
  • Ruiz, J. & Li, C. (2014). Measurement of the Basic Friction Angle of Rock by Three Different Tilt Test Methods. In: Alejano R, Perucho A, Olalla C, Jimenez R (eds) Rock eng and rock mech: structures in and on rock masses (EUROCK 2014), ISRM EU reg symp, Vigo, pp 261-266. https://doi.org/10.1201/b16955-42
  • Stimpson, B. (1981). A Suggested Technique for Determining the Basic Friction Angle of Rock Surface using Core. Int J. Rock Mech. Min. Sci. Geomech. Abst. 18(1):63–65. https://doi. org/10.1016/0148-9062(81)90266-7
  • Wines, D. R. & Lilly, P. A. (2003). Estimates of Rock Joint Shear Strength in Part of the Fimiston Open Pit Operation in Western Australia. Int J Rock Mech Min Sci 40(6):929-937. https://doi. org/10.1016/S1365-1609(03)00020-0
  • Wyllie, C. & Mah, W. (2005). Rock Slope Engineering, Civil and Mining, 4th Edition. Taylor & Francis Group, London and New York, 431 p.
  • Zhang, N., Li, C. C., Lu, A., Chen, X., Liu, D. & Zhu, E. (2019). Experimental Studies on the Basic Friction Angle of Planar Rock Surfaces by Tilt Test. ASTM International. J. Test. Eval.. January 2019; 47(1): 256-283. https://doi.org/10.1520/ JTE20170308
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Kaya Mekaniği, Mühendislik Jeolojisi, Uygulamalı Jeoloji
Bölüm Araştırma Makalesi
Yazarlar

Kamil Kayabalı 0000-0002-0228-0777

Emre Pınarcı 0000-0001-7513-014X

Farhad Habibzadeh 0000-0001-5672-5834

Muhammet Beyhan 0000-0002-8448-6516

Aylin Fidan Üzgün Bu kişi benim 0009-0000-3380-7554

Mehmet Yakut 0000-0002-7355-6021

Yayımlanma Tarihi 26 Haziran 2024
Gönderilme Tarihi 6 Mayıs 2024
Kabul Tarihi 25 Mayıs 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 48 Sayı: 1

Kaynak Göster

APA Kayabalı, K., Pınarcı, E., Habibzadeh, F., Beyhan, M., vd. (2024). Süreksizliklerde İkinci Derece Düzensizlik Açılarının Karşılaştırmalı Değerlendirilmesi. Jeoloji Mühendisliği Dergisi, 48(1), 43-58. https://doi.org/10.24232/jmd.1479534