Araştırma Makalesi
BibTex RIS Kaynak Göster

Rulmanlı Yatak Uygulamaları için Çok Yüksek Molekül Ağırlıklı Polietilen ve Döküm Poliamit Termoplastik Esaslı Polimerlerinin Tribolojik Performanslarının karşılaştırılması

Yıl 2020, Cilt: 1 Sayı: 2, 85 - 96, 06.12.2020

Öz

Bu deneysel çalışmada, rulmanlı yatak uygulamalarında kullanılabilecek aşınmaya dayanıklı en iyi özellik gösteren polimer malzemeyi tespit etmek için katkısız çok yüksek molekül ağırlıklı polietilen (ÇYMA-PE) ve döküm poliamit (Döküm PA) polimerleri kullanılmıştır. Tribolojik testler için, disk üzerinde pimli bir aşınma test düzeneği ve karşı disk malzeme olarak AISI 316L paslanmaz çelik malzeme kullanılmıştır. Aşınma ve sürtünme deneyleri, 0.5, 1.0 ve 2.0 m/s gibi üç farklı kayma hızında ve 49N, 98N ve 147N üç farklı yük altında gerçekleştirilmiştir. Çalışmadan elde edilen veriler sonucunda, en yüksek spesifik aşınma oranı kayma hızı 2.0 m/s ve 49N yük altında 53x10-6 mm3/Nm değerine sahip çok yüksek molekül ağırlıklı polietilen polimerinde elde edilmiştir. En düşük spesifik aşınma oranı ise kayma hızı 1.0 m/s ve 147N yük altında 4.6 x10-6 mm3/Nm değeri ile katkısız döküm poliamit polimerinde elde edilmiştir. Elde edilen deney sonuçlarına göre, çok yüksek molekül ağırlıklı polietilen polimeri, döküm poliamit polimere göre ortalama 3.5 kat daha yüksek aşınmaya karşı dirençlidir. Tribolojik performans açısından bakıldığında, çok yüksek molekül ağırlıklı polietilen polimeri, rulmanlı yatak uygulamaları için en uygun malzeme olarak belirlenmiştir.

Kaynakça

  • Abdel-Jaber G.T., Mohamed M.K., Ali W.Y., Effect of Magnetic Field on the Friction and Wear of Polyamide Sliding against Steel. Materials Sciences and Applications 5, 46-53, 2014.
  • Anonymous, 2020. UHMWPE pipe, https://www.diytrade.com/china/pd/2014088/ UHMWPE _PIPE.html/(Erişim Tarihi: 16.11.2020).
  • Berins M.L., S.P.I. Plastics Engineering Handbook, Chapman Hall, New York, USA, 1991.
  • Briscoe B.J., Sinha S.K., Wear of polymers. Journal Engineering Tribology, Proceedings Institution Mechanical Engineers Part J 216(6), 401-413, 2002.
  • Brockett C.L., Carbone S., Fisher J., Jennings L.M., PEEK and CFR-PEEK as alternative bearing materials to UHMWPE in a fixed bearing total knee replacement: An experimental wear study. Wear 374, 86–91, 2017.
  • Chang B-P., Akil H.M., Nasir R.B.M., Comparative study of micro- and nano-ZnO reinforced UHMWPE composites under dry sliding wear. Wear, 297(1–2), 1120-1127, 2013.
  • Dangshen X., Friction and wear properties of UHMWPE composites reinforced with carbon fiber. Materials Letters 59, 175–179, 2005.
  • Demirci M.T., Düzcükoğlu H., Wear behaviors of Polytetrafluoroethylene and glass fiber reinforced Polyamide 66 journal bearings. Materials and Design 57, 560-567, 2014.
  • Fu J., Ghali B.W., Lozynsky A.J., Oral E., Muratoglu O.K., Wear resistant UHMWPE with high toughness by high temperature melting and subsequent radiation cross-linking. Polymer 52(4), 1155-1162, 2011.
  • Jarvela P.A., Jarvela P.K., Multicomponent Compounding of Polypropylene. Journal of Materials Science 31, 3853-3860, 1996.
  • Kahyaoglu O.K., Unal H., Friction and wear behaviours of medical grade UHMWPE at dry and lubricated conditions. International Journal of Physical Sciences 7(16), 2478-2485, 2012.
  • Karuppiah K.S.K., Bruck A.L., Sundararajan S., Wang J., Lin Z., Xu Z-H., Li X., Friction and wear behavior of ultra-high molecular weightpolyethylene as a function of polymer crystallinity. Acta Biomaterialia 4, 1401–1410, 2008.
  • Kurtz S.M., UHMWPE Biomaterials Handbook, Academic Press, Second Edition, USA, 2009.
  • Kyu T., Zhou Z.L., Zhu G.C., Tajuddin Y., Qutubuddin S., Novel Filled Polymer Composites Prepared from in situ Polymerization via a Colloidal Approach. I. Kaolin/Nylon 6 in situ Composites. Journal of Polymer Science, Part B: Polymer Physics 34, 1761-1768, 1996. Landy M.M., Walker P.S., Wear of ultra-high-molecular-weight polyethylene components of 90 retrieved knee prostheses. The Journal of Arthroplasty 3, 73-85, 1988.
  • Maksimkina A.V., Danilovb V.D., Senatova F.S., Olifirova L.K., Kaloshkin S.D., Wear performance of bulk oriented nanocomposites UHMWPE/FMWCNT and metal-polymer composite sliding bearings. Wear 392–393, 167-173, 2017.
  • Mimaroglu A., Unal H., Sumer M., Ozel A., Friction and Wear of GUR 1020 Medical Grade Uhmwpe Polymer at Dry Environmental Condition. Manufacturing Science and Technology 3(4), 111-113, 2015.
  • Niu L., Cao H., Hou H., Wu B., Lan Y., Xiong X., Experimental observations and dynamic modeling of vibration characteristics of a cylindrical roller bearing with roller defects. Mechanical Systems and Signal Processing 138, 106553, 2020.
  • Onate J.I., Comin M., Braceras I., Garcia, A., Viviente, J.L., Brizuela, M., Garagorri N., Peris J.L. Alava J.I., Wear reduction effect on ultra-high-molecular-weight polyethylene by application of hard coatings and ion implantation on cobalt chromium alloy, as measured in a knee wear simulation machine. Surface and Coating. Technology 1056, 142-144, 2001.
  • Ravi Kumar B.N., Suresha B., Venkataramareddy M., Effect of particulate fillers on mechanical and abrasive wear behavior of polyamide 66/polypropylene nanocomposites. Materials and Design 30, 3852–3858, 2009.
  • Sarı A., Nteziyaremy Ö.S., Polimer Yatak Malzemelerin Tribolojik Özelliklerinin Deneysel İncelenmesi, Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 16, 446‐453, 2016.
  • Shibata K., Yamaguchi T., Hokkirigawa K., Tribological behavior of polyamide 66/rice bran ceramics and polyamide 66/glass bead composites. Wear 317, 1-7, 2014.
  • Srinath G., Gnanamoorthy R., Sliding wear performance of polyamide 6–clay nanocomposites in water. Composites Science and Technology 67 399–405, 2007.
  • Taşdelen Y., Polimer malzemelerin sfero döküm karşısında aşınma davranışlarının incelenmesi. Zonguldak Karaelmas Üniversitesi, Yüksek Lisans Tezi, (Basılmış), 2007.
  • Unal H., Mimaroglu A., Friction and wear performance of polyamide 6 and graphite and wax polyamide 6 composites under dry sliding conditions. Wear 289, 132–137, 2012.
  • Unal H., Sen U., Mimaroglu A., Dry sliding wear characteristics ofsome industrial polymers against steel counterface. Tribology International 37, 727–732, 2004.
  • WangY., Yin Z., Li H., Gao G., Zhang X., Friction and wear characteristics of ultrahigh molecular weight polyethylene (UHMWPE) composites containing glass fibers and carbon fibers under dry and water-lubricated conditions. Wear 380–381, 42-51, 2017.

Comparison of Tribological Performance of Ultrahigh Molecular Weight Polyethylene and Cast Polyamide Thermoplastic Based Polymers for Roller Bearing Applications

Yıl 2020, Cilt: 1 Sayı: 2, 85 - 96, 06.12.2020

Öz

In this experimental study, pure ultra-high molecular weight polyethylene (UHMWPE) and casting polyamide (Casting PA) polymers were used to find the best wear resistant polymer material that can be used in rolling bearing applications. For tribological tests, a wear test device with a pin on the disc and AISI 316L stainless steel material as the counter disc material were used. The wear and friction tests were carried out under three different sliding speeds of 0.5, 1.0, and 2.0 m/s and under three different loads of 49N, 98N, and 147N. As a result of the data obtained from the study, the highest specific wear rate was obtained in ultra-high molecular weight polyethylene polymer with a sliding speed of 2 m/s and a value of 53x10-6 mm3/Nm under 49N load. The lowest specific wear rate was obtained in the pure casting polyamide polymer with a sliding speed of 1.0 m/s and a value of 4.6x10-6 mm3/Nm under 147N load. According to the test results obtained, the ultra-high molecular weight polyethylene polymer is 3.5 times higher in wear resistance than the casting polyamide polymer. In terms of tribological performance, ultra-high molecular weight polyethylene polymer has been determined as the most suitable material for rolling bearing applications.

Kaynakça

  • Abdel-Jaber G.T., Mohamed M.K., Ali W.Y., Effect of Magnetic Field on the Friction and Wear of Polyamide Sliding against Steel. Materials Sciences and Applications 5, 46-53, 2014.
  • Anonymous, 2020. UHMWPE pipe, https://www.diytrade.com/china/pd/2014088/ UHMWPE _PIPE.html/(Erişim Tarihi: 16.11.2020).
  • Berins M.L., S.P.I. Plastics Engineering Handbook, Chapman Hall, New York, USA, 1991.
  • Briscoe B.J., Sinha S.K., Wear of polymers. Journal Engineering Tribology, Proceedings Institution Mechanical Engineers Part J 216(6), 401-413, 2002.
  • Brockett C.L., Carbone S., Fisher J., Jennings L.M., PEEK and CFR-PEEK as alternative bearing materials to UHMWPE in a fixed bearing total knee replacement: An experimental wear study. Wear 374, 86–91, 2017.
  • Chang B-P., Akil H.M., Nasir R.B.M., Comparative study of micro- and nano-ZnO reinforced UHMWPE composites under dry sliding wear. Wear, 297(1–2), 1120-1127, 2013.
  • Dangshen X., Friction and wear properties of UHMWPE composites reinforced with carbon fiber. Materials Letters 59, 175–179, 2005.
  • Demirci M.T., Düzcükoğlu H., Wear behaviors of Polytetrafluoroethylene and glass fiber reinforced Polyamide 66 journal bearings. Materials and Design 57, 560-567, 2014.
  • Fu J., Ghali B.W., Lozynsky A.J., Oral E., Muratoglu O.K., Wear resistant UHMWPE with high toughness by high temperature melting and subsequent radiation cross-linking. Polymer 52(4), 1155-1162, 2011.
  • Jarvela P.A., Jarvela P.K., Multicomponent Compounding of Polypropylene. Journal of Materials Science 31, 3853-3860, 1996.
  • Kahyaoglu O.K., Unal H., Friction and wear behaviours of medical grade UHMWPE at dry and lubricated conditions. International Journal of Physical Sciences 7(16), 2478-2485, 2012.
  • Karuppiah K.S.K., Bruck A.L., Sundararajan S., Wang J., Lin Z., Xu Z-H., Li X., Friction and wear behavior of ultra-high molecular weightpolyethylene as a function of polymer crystallinity. Acta Biomaterialia 4, 1401–1410, 2008.
  • Kurtz S.M., UHMWPE Biomaterials Handbook, Academic Press, Second Edition, USA, 2009.
  • Kyu T., Zhou Z.L., Zhu G.C., Tajuddin Y., Qutubuddin S., Novel Filled Polymer Composites Prepared from in situ Polymerization via a Colloidal Approach. I. Kaolin/Nylon 6 in situ Composites. Journal of Polymer Science, Part B: Polymer Physics 34, 1761-1768, 1996. Landy M.M., Walker P.S., Wear of ultra-high-molecular-weight polyethylene components of 90 retrieved knee prostheses. The Journal of Arthroplasty 3, 73-85, 1988.
  • Maksimkina A.V., Danilovb V.D., Senatova F.S., Olifirova L.K., Kaloshkin S.D., Wear performance of bulk oriented nanocomposites UHMWPE/FMWCNT and metal-polymer composite sliding bearings. Wear 392–393, 167-173, 2017.
  • Mimaroglu A., Unal H., Sumer M., Ozel A., Friction and Wear of GUR 1020 Medical Grade Uhmwpe Polymer at Dry Environmental Condition. Manufacturing Science and Technology 3(4), 111-113, 2015.
  • Niu L., Cao H., Hou H., Wu B., Lan Y., Xiong X., Experimental observations and dynamic modeling of vibration characteristics of a cylindrical roller bearing with roller defects. Mechanical Systems and Signal Processing 138, 106553, 2020.
  • Onate J.I., Comin M., Braceras I., Garcia, A., Viviente, J.L., Brizuela, M., Garagorri N., Peris J.L. Alava J.I., Wear reduction effect on ultra-high-molecular-weight polyethylene by application of hard coatings and ion implantation on cobalt chromium alloy, as measured in a knee wear simulation machine. Surface and Coating. Technology 1056, 142-144, 2001.
  • Ravi Kumar B.N., Suresha B., Venkataramareddy M., Effect of particulate fillers on mechanical and abrasive wear behavior of polyamide 66/polypropylene nanocomposites. Materials and Design 30, 3852–3858, 2009.
  • Sarı A., Nteziyaremy Ö.S., Polimer Yatak Malzemelerin Tribolojik Özelliklerinin Deneysel İncelenmesi, Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 16, 446‐453, 2016.
  • Shibata K., Yamaguchi T., Hokkirigawa K., Tribological behavior of polyamide 66/rice bran ceramics and polyamide 66/glass bead composites. Wear 317, 1-7, 2014.
  • Srinath G., Gnanamoorthy R., Sliding wear performance of polyamide 6–clay nanocomposites in water. Composites Science and Technology 67 399–405, 2007.
  • Taşdelen Y., Polimer malzemelerin sfero döküm karşısında aşınma davranışlarının incelenmesi. Zonguldak Karaelmas Üniversitesi, Yüksek Lisans Tezi, (Basılmış), 2007.
  • Unal H., Mimaroglu A., Friction and wear performance of polyamide 6 and graphite and wax polyamide 6 composites under dry sliding conditions. Wear 289, 132–137, 2012.
  • Unal H., Sen U., Mimaroglu A., Dry sliding wear characteristics ofsome industrial polymers against steel counterface. Tribology International 37, 727–732, 2004.
  • WangY., Yin Z., Li H., Gao G., Zhang X., Friction and wear characteristics of ultrahigh molecular weight polyethylene (UHMWPE) composites containing glass fibers and carbon fibers under dry and water-lubricated conditions. Wear 380–381, 42-51, 2017.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Malzeme Üretim Teknolojileri
Bölüm Araştırma Makaleleri
Yazarlar

Hüseyin Ünal 0000-0003-0521-6647

Kemal Ermiş 0000-0003-3110-2731

Yayımlanma Tarihi 6 Aralık 2020
Gönderilme Tarihi 19 Kasım 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 1 Sayı: 2

Kaynak Göster

APA Ünal, H., & Ermiş, K. (2020). Rulmanlı Yatak Uygulamaları için Çok Yüksek Molekül Ağırlıklı Polietilen ve Döküm Poliamit Termoplastik Esaslı Polimerlerinin Tribolojik Performanslarının karşılaştırılması. Journal of Materials and Mechatronics: A, 1(2), 85-96.
AMA Ünal H, Ermiş K. Rulmanlı Yatak Uygulamaları için Çok Yüksek Molekül Ağırlıklı Polietilen ve Döküm Poliamit Termoplastik Esaslı Polimerlerinin Tribolojik Performanslarının karşılaştırılması. J. Mater. Mechat. A. Aralık 2020;1(2):85-96.
Chicago Ünal, Hüseyin, ve Kemal Ermiş. “Rulmanlı Yatak Uygulamaları için Çok Yüksek Molekül Ağırlıklı Polietilen Ve Döküm Poliamit Termoplastik Esaslı Polimerlerinin Tribolojik Performanslarının karşılaştırılması”. Journal of Materials and Mechatronics: A 1, sy. 2 (Aralık 2020): 85-96.
EndNote Ünal H, Ermiş K (01 Aralık 2020) Rulmanlı Yatak Uygulamaları için Çok Yüksek Molekül Ağırlıklı Polietilen ve Döküm Poliamit Termoplastik Esaslı Polimerlerinin Tribolojik Performanslarının karşılaştırılması. Journal of Materials and Mechatronics: A 1 2 85–96.
IEEE H. Ünal ve K. Ermiş, “Rulmanlı Yatak Uygulamaları için Çok Yüksek Molekül Ağırlıklı Polietilen ve Döküm Poliamit Termoplastik Esaslı Polimerlerinin Tribolojik Performanslarının karşılaştırılması”, J. Mater. Mechat. A, c. 1, sy. 2, ss. 85–96, 2020.
ISNAD Ünal, Hüseyin - Ermiş, Kemal. “Rulmanlı Yatak Uygulamaları için Çok Yüksek Molekül Ağırlıklı Polietilen Ve Döküm Poliamit Termoplastik Esaslı Polimerlerinin Tribolojik Performanslarının karşılaştırılması”. Journal of Materials and Mechatronics: A 1/2 (Aralık 2020), 85-96.
JAMA Ünal H, Ermiş K. Rulmanlı Yatak Uygulamaları için Çok Yüksek Molekül Ağırlıklı Polietilen ve Döküm Poliamit Termoplastik Esaslı Polimerlerinin Tribolojik Performanslarının karşılaştırılması. J. Mater. Mechat. A. 2020;1:85–96.
MLA Ünal, Hüseyin ve Kemal Ermiş. “Rulmanlı Yatak Uygulamaları için Çok Yüksek Molekül Ağırlıklı Polietilen Ve Döküm Poliamit Termoplastik Esaslı Polimerlerinin Tribolojik Performanslarının karşılaştırılması”. Journal of Materials and Mechatronics: A, c. 1, sy. 2, 2020, ss. 85-96.
Vancouver Ünal H, Ermiş K. Rulmanlı Yatak Uygulamaları için Çok Yüksek Molekül Ağırlıklı Polietilen ve Döküm Poliamit Termoplastik Esaslı Polimerlerinin Tribolojik Performanslarının karşılaştırılması. J. Mater. Mechat. A. 2020;1(2):85-96.