Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2019, Cilt: 2 Sayı: 2, 112 - 116, 30.08.2019
https://doi.org/10.33187/jmsm.435481

Öz

Kaynakça

  • [1] Agarwal, RP, Zhou, H, He, Y: Existence of fractional neutral functional differential equations. Comput. Math. Appl. 59(3), 1095-1100 (2010)
  • [2] Abdeljawad, T., On Conformable Fractional Calculus,Journal of Computational ad Applied Mathematics,Vol. 279, 1 May 2015, 57-66, arXiv: 1402.6892v1 [math D, S] 27 Feb 2014.
  • [3] Balakrishnan, A. V., Fractional Powers Of Closed Operators And The Semigroups Generated By Them, Pacific Journal of Mathematics 10, pp. 419-439, 1960.
  • [4] TRAVIS. C. C and WEBB. G. F. Cosine Families and abstract nonlinear second order differential equations. Acta Mathematica Academiae Seientiarum Hungaricae Tomus 32 (3–4), (1978), 75–96.
  • [5] Mohammed AL Horani. Roshdi Khalil and Thabet Abdeljawad. Conformable Fractional Semigroups of Operators. arXiv:1502.06014v1 [math.FA] 21 Nov 2014 Conformable.
  • [6] Khalil, R., Al Horani, M., Yousef. A. and Sababheh, M., A new Definition Of Fractional Derivative, J. Comput. Appl. Math. 264. pp. 65?0, 2014.
  • [7] Kilbas, AA, Srivastava, HH, Trujillo, JJ: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)
  • [8] Pazy, A., Semigroups of Linear Operators and Applications to Partial Differntial Equations, Springer-Verlag, 1983.

Conformable Fractional Cosine Families of Operators

Yıl 2019, Cilt: 2 Sayı: 2, 112 - 116, 30.08.2019
https://doi.org/10.33187/jmsm.435481

Öz

In this paper we are concerned with the problem \begin{eqnarray*}\begin{cases} u^{(\alpha)}(t)=Au(t)+f(t,u(t))& t\in [0,T]\\ u(0)=u_0, D^{\alpha}u(0)=u_1\end{cases}\end{eqnarray*}  \begin{eqnarray*}     \begin{cases}     u^{(\alpha)}(t)=Au(t)+f(t,u(t))& t\in [0,T]\\     u(0)=u_0, D^{\alpha}u(0)=u_1     \end{cases}   \label{pb1} \end{eqnarray*}   Where $\alpha\in (1,2]$, and we use the conformable derivative. We give the notion of $\alpha$-Cosine families and proveded the existence and uniqueness of the problem 0.1.

Kaynakça

  • [1] Agarwal, RP, Zhou, H, He, Y: Existence of fractional neutral functional differential equations. Comput. Math. Appl. 59(3), 1095-1100 (2010)
  • [2] Abdeljawad, T., On Conformable Fractional Calculus,Journal of Computational ad Applied Mathematics,Vol. 279, 1 May 2015, 57-66, arXiv: 1402.6892v1 [math D, S] 27 Feb 2014.
  • [3] Balakrishnan, A. V., Fractional Powers Of Closed Operators And The Semigroups Generated By Them, Pacific Journal of Mathematics 10, pp. 419-439, 1960.
  • [4] TRAVIS. C. C and WEBB. G. F. Cosine Families and abstract nonlinear second order differential equations. Acta Mathematica Academiae Seientiarum Hungaricae Tomus 32 (3–4), (1978), 75–96.
  • [5] Mohammed AL Horani. Roshdi Khalil and Thabet Abdeljawad. Conformable Fractional Semigroups of Operators. arXiv:1502.06014v1 [math.FA] 21 Nov 2014 Conformable.
  • [6] Khalil, R., Al Horani, M., Yousef. A. and Sababheh, M., A new Definition Of Fractional Derivative, J. Comput. Appl. Math. 264. pp. 65?0, 2014.
  • [7] Kilbas, AA, Srivastava, HH, Trujillo, JJ: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)
  • [8] Pazy, A., Semigroups of Linear Operators and Applications to Partial Differntial Equations, Springer-Verlag, 1983.
Toplam 8 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Makaleler
Yazarlar

Elomari M'hamed

Said Melliani Bu kişi benim

L. S. Chadli

Yayımlanma Tarihi 30 Ağustos 2019
Gönderilme Tarihi 21 Haziran 2018
Kabul Tarihi 21 Ocak 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 2 Sayı: 2

Kaynak Göster

APA M’hamed, E., Melliani, S., & Chadli, L. S. (2019). Conformable Fractional Cosine Families of Operators. Journal of Mathematical Sciences and Modelling, 2(2), 112-116. https://doi.org/10.33187/jmsm.435481
AMA M’hamed E, Melliani S, Chadli LS. Conformable Fractional Cosine Families of Operators. Journal of Mathematical Sciences and Modelling. Ağustos 2019;2(2):112-116. doi:10.33187/jmsm.435481
Chicago M’hamed, Elomari, Said Melliani, ve L. S. Chadli. “Conformable Fractional Cosine Families of Operators”. Journal of Mathematical Sciences and Modelling 2, sy. 2 (Ağustos 2019): 112-16. https://doi.org/10.33187/jmsm.435481.
EndNote M’hamed E, Melliani S, Chadli LS (01 Ağustos 2019) Conformable Fractional Cosine Families of Operators. Journal of Mathematical Sciences and Modelling 2 2 112–116.
IEEE E. M’hamed, S. Melliani, ve L. S. Chadli, “Conformable Fractional Cosine Families of Operators”, Journal of Mathematical Sciences and Modelling, c. 2, sy. 2, ss. 112–116, 2019, doi: 10.33187/jmsm.435481.
ISNAD M’hamed, Elomari vd. “Conformable Fractional Cosine Families of Operators”. Journal of Mathematical Sciences and Modelling 2/2 (Ağustos 2019), 112-116. https://doi.org/10.33187/jmsm.435481.
JAMA M’hamed E, Melliani S, Chadli LS. Conformable Fractional Cosine Families of Operators. Journal of Mathematical Sciences and Modelling. 2019;2:112–116.
MLA M’hamed, Elomari vd. “Conformable Fractional Cosine Families of Operators”. Journal of Mathematical Sciences and Modelling, c. 2, sy. 2, 2019, ss. 112-6, doi:10.33187/jmsm.435481.
Vancouver M’hamed E, Melliani S, Chadli LS. Conformable Fractional Cosine Families of Operators. Journal of Mathematical Sciences and Modelling. 2019;2(2):112-6.

28627    Journal of Mathematical Sciences and Modelling28626


      3090029232  13487

28628  JMSM'de yayınlanan makaleler Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.