This paper deals with the solution behavior and periodic nature of the solutions of the difference equation $$ s_{n+1}=\alpha s_{n}+\dfrac{\beta s_{n}s_{n-4}}{\gamma s_{n-4}+\delta s_{n-5} },\;\;\;n=0,1,... $$ {\Large \noindent }where the initial conditions $s_{-5},\ s_{-4},\ s_{-3},\ s_{-2},\ s_{-1},\ s_{0}$ are arbitrary positive real numbers and $\alpha ,\ \beta ,\ \gamma ,\ \delta \ $are positive constants. Also we obtain the closed form of the solutions of some special cases of this equation.
stability form of solution periodicity rational difference equation
Birincil Dil | İngilizce |
---|---|
Konular | Matematik |
Bölüm | Makaleler |
Yazarlar | |
Yayımlanma Tarihi | 31 Ağustos 2021 |
Gönderilme Tarihi | 29 Nisan 2021 |
Kabul Tarihi | 10 Eylül 2021 |
Yayımlandığı Sayı | Yıl 2021 Cilt: 4 Sayı: 2 |
Journal of Mathematical Sciences and Modelling
JMSM'de yayınlanan makaleler Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.