Research Article
BibTex RIS Cite
Year 2023, Volume: 6 Issue: 1, 24 - 31, 30.04.2023
https://doi.org/10.33187/jmsm.1127905

Abstract

References

  • [1] L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338-353.
  • [2] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets Syst., 20 (1986), 87-96.
  • [3] S. Karakuş, K. Demirci, O. Duman, Statistical convergence on intuitionistic fuzzy normed spaces, Chaos Solitons & Fractals, 35 (2008), 763-769.
  • [4] M. Mursaleen, S. A. Mohiuddine Statistical convergence of double sequences in intuitionistic fuzzy normed spaces, Chaos Solitons & Fractals, 41(5) (2009), 2414-2421.
  • [5] D. Rath, B. Tripathy, On statistically convergent and statistically Cauchy sequences, Indian J. Pure Appl. Math., 25 (1994), 381-386.
  • [6] E. Savaş, On statistically convergent double sequences of fuzzy numbers, Inform. Sci., 162(3-4) (2004), 183-192.
  • [7] H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math, 2 (1951), 73-74.
  • [8] R. Yapalı, Ö. Talo, Tauberian conditions for double sequences which are statistically summable (C, 1, 1) in fuzzy number space, J. Intell. Fuzzy Syst., 33(2) (2017), 947-956.
  • [9] R. Yapalı, U. Gürdal, Pringsheim and statistical convergence for double sequences on L􀀀fuzzy normed space, AIMS Math., 6(12) (2021), 13726-13733.
  • [10] M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy Sets Syst., 27 (1988), 385-389.
  • [11] V. Gregori, J. Minana, S. Morillas, A. Sapena, Cauchyness and convergence in fuzzy metric spaces, RACSAM 111(1) (2017), 25-37.
  • [12] J. H. Park, Intuitionistic fuzzy metric spaces, Chaos Solitons & Fractals, 22 (2004), 1039-1046.
  • [13] C. Alaca, D. Türkoğlu, C. Yıldız, Fixed points in intuitionistic fuzzy metric spaces, Chaos Solitons & Fractals, 29(5) (2006), 1073-1078.
  • [14] C. Alaca, E. Hakan, On uniform continuity and Lebesgue property in intuitionistic fuzzy metric spaces, J. Appl. Funct. Anal., 3(1) (2008).
  • [15] D. Türkoğlu, C. Alaca, Y. J. Cho, C. Yıldız Common fixed point theorems in intuitionistic fuzzy metric spaces, J. Appl. Math. Comput., 22(1) (2006), 411-424.
  • [16] J. A. Goguen, L-fuzzy sets, J. Math. Anal. Appl., 18(1) (1967), 145-174.
  • [17] G. Deschrijver, D. O’Regan, R. Saadati, S. M. Vaezpour, L􀀀Fuzzy Euclidean normed spaces and compactness, Chaos Solitons & Fractals, 42(1) (2009), 40-45.
  • [18] R. Saadati, P. Choonkil, Non-Archimedean L-fuzzy normed spaces and stability of functional equations, Comput. Math. Appl., 60(8) (2010), 2488-2496.
  • [19] R. Yapalı, H. Polat, Tauberian theorems for the weighted mean methods of summability in intuitionistic fuzzy normed spaces, Caspian J. Math. Sci. (CJMS), (2021).
  • [20] Ö. Talo, E. Yavuz, Cesaro summability of sequences in intuitionistic fuzzy normed spaces and related Tauberian theorems, Soft Comput., 25 (2021) 2315-2323.
  • [21] E. Yavuz, Tauberian theorems for statistical Cesaro and statistical logarithmic summability of sequences in intuitionistic fuzzy normed spaces, J. Intell. Fuzzy Syst., 40(6) (2021), 12433-12442.
  • [22] E. Savaş, On lacunary statistically convergent double sequences of fuzzy numbers, Appl. Math. Lett., 21(2) (2008), 134-141.
  • [23] E. Savaş, On some double lacunary sequence spaces of fuzzy numbers, Math. Comput. Appl. 15(3) (2010), 439-448.
  • [24] E. Savaş, V. Karakaya, Some new sequence spaces defined by lacunary sequences, Math. Slovaca, 57(4) (2007), 393-399.
  • [25] M. R. Türkmen, M. Çınar, Lacunary statistical convergence in fuzzy normed linear spaces, Appl. Comput. Math., 6(5) (2017), 233-237.
  • [26] M. R. Türkmen, M. Çınar, l-statistical convergence in fuzzy normed linear spaces, J. Intell. Fuzzy Syst., 34(6) (2018), 4023-4030.
  • [27] U. Ulusu, E. Dündar, I-lacunary statistical convergence of sequences of sets, Filomat, 28(8) (2014), 1567-1574.
  • [28] F. Nuray, Lacunary statistical convergence of sequences of fuzzy numbers, Fuzzy Sets Syst., 99 (3) (1998), 353-355.
  • [29] M. Mursaleen, S. A. Mohiuddine, On lacunary statistical convergence with respect to the intuitionistic fuzzy normed space, J. Comput. Appl. Math., 233 (2009), 142-149.
  • [30] E. Dündar, Ö. Talo, I2-convergence of double sequences of fuzzy numbers, Iran. J. Fuzzy Syst., 10(3) (2013), 37-50.
  • [31] E. Dündar, Ö. Talo, I2-Cauchy double sequences of fuzzy numbers, Gen. Math. Notes, 16(2) (2013), 103-114.
  • [32] E. Dündar, Ö. Talo, F. Başar, Regularly (I2, I)-convergence and regularly (I2, I)-Cauchy double sequences of fuzzy numbers, Internat. J. Anal., 2013(2013) (2013) Article ID: 749684, 7 pages.
  • [33] E. Dündar, M. R. Türkmen, On I2-convergence and I-2 -convergence of double sequences in fuzzy normed spaces, Konuralp J. Math., 7(2) (2019), 405-409.
  • [34] E. Dündar, M. R. Türkmen, On I2-Cauchy double sequences in fuzzy normed spaces, Comm. Adv. Math. Sci., 2(2) (2019), 154-160.
  • [35] M. R. Türkmen, E. Dündar, On Lacunary statistical convergence of double sequences and some properties in fuzzy normed spaces, J. Intell. Fuzzy Syst., 36(2) (2019), 1683-1690.
  • [36] E. Dündar, M. R. Türkmen, N. Pancaroğlu Akın, Regularly ideal convergence of double sequences in fuzzy normed spaces, Bulletin Math. Anal. Appl., 12(2) (2020), 12-26.
  • [37] J. A. Fridy, C. Orhan, Lacunary statistical convergence, Pacific J. Math., 160(1) (1993), 43-51.
  • [38] J. A. Fridy, C. Orhan, Lacunary statistical summability, J. Math. Anal. Appl., 173(2) (1993), 497-504.
  • [39] S. Shakeri, R. Saadati, C. Park, Stability of the quadratic functional equation in non-Archimedean L- fuzzy normed spaces, Int. J. Nonlinear Anal. Appl., 1(2) (2010), 72-83.
  • [40] R. Yapalı, H. Çoşkun, U. Gürdal, Statistical convergence on L􀀀fuzzy normed space, Filomat, Accepted.
  • [41] R. F. Patterson, E Savaş, Lacunary statistical convergence of double sequences, Math. Comm., 10(1) (2005), 55-61.

Lacunary Statistical Convergence for Double Sequences on $\mathscr{L}-$ Fuzzy Normed Space

Year 2023, Volume: 6 Issue: 1, 24 - 31, 30.04.2023
https://doi.org/10.33187/jmsm.1127905

Abstract

On $\mathscr{L}-$ fuzzy normed spaces, which is the generalization of fuzzy spaces, the notion of lacunary statistical convergence for double sequences which is a generalization of statistical convergence, are studied and developed in this paper. In addition, the definitions of lacunary statistical Cauchy and completeness for double sequences and related theorems are given on $\mathscr{L}-$ fuzzy normed spaces. Also, the relationship of lacunary statistical Cauchyness and lacunary statistical boundedness for double sequences with respect to $\mathscr{L}-$ fuzzy norm is shown.

References

  • [1] L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338-353.
  • [2] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets Syst., 20 (1986), 87-96.
  • [3] S. Karakuş, K. Demirci, O. Duman, Statistical convergence on intuitionistic fuzzy normed spaces, Chaos Solitons & Fractals, 35 (2008), 763-769.
  • [4] M. Mursaleen, S. A. Mohiuddine Statistical convergence of double sequences in intuitionistic fuzzy normed spaces, Chaos Solitons & Fractals, 41(5) (2009), 2414-2421.
  • [5] D. Rath, B. Tripathy, On statistically convergent and statistically Cauchy sequences, Indian J. Pure Appl. Math., 25 (1994), 381-386.
  • [6] E. Savaş, On statistically convergent double sequences of fuzzy numbers, Inform. Sci., 162(3-4) (2004), 183-192.
  • [7] H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math, 2 (1951), 73-74.
  • [8] R. Yapalı, Ö. Talo, Tauberian conditions for double sequences which are statistically summable (C, 1, 1) in fuzzy number space, J. Intell. Fuzzy Syst., 33(2) (2017), 947-956.
  • [9] R. Yapalı, U. Gürdal, Pringsheim and statistical convergence for double sequences on L􀀀fuzzy normed space, AIMS Math., 6(12) (2021), 13726-13733.
  • [10] M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy Sets Syst., 27 (1988), 385-389.
  • [11] V. Gregori, J. Minana, S. Morillas, A. Sapena, Cauchyness and convergence in fuzzy metric spaces, RACSAM 111(1) (2017), 25-37.
  • [12] J. H. Park, Intuitionistic fuzzy metric spaces, Chaos Solitons & Fractals, 22 (2004), 1039-1046.
  • [13] C. Alaca, D. Türkoğlu, C. Yıldız, Fixed points in intuitionistic fuzzy metric spaces, Chaos Solitons & Fractals, 29(5) (2006), 1073-1078.
  • [14] C. Alaca, E. Hakan, On uniform continuity and Lebesgue property in intuitionistic fuzzy metric spaces, J. Appl. Funct. Anal., 3(1) (2008).
  • [15] D. Türkoğlu, C. Alaca, Y. J. Cho, C. Yıldız Common fixed point theorems in intuitionistic fuzzy metric spaces, J. Appl. Math. Comput., 22(1) (2006), 411-424.
  • [16] J. A. Goguen, L-fuzzy sets, J. Math. Anal. Appl., 18(1) (1967), 145-174.
  • [17] G. Deschrijver, D. O’Regan, R. Saadati, S. M. Vaezpour, L􀀀Fuzzy Euclidean normed spaces and compactness, Chaos Solitons & Fractals, 42(1) (2009), 40-45.
  • [18] R. Saadati, P. Choonkil, Non-Archimedean L-fuzzy normed spaces and stability of functional equations, Comput. Math. Appl., 60(8) (2010), 2488-2496.
  • [19] R. Yapalı, H. Polat, Tauberian theorems for the weighted mean methods of summability in intuitionistic fuzzy normed spaces, Caspian J. Math. Sci. (CJMS), (2021).
  • [20] Ö. Talo, E. Yavuz, Cesaro summability of sequences in intuitionistic fuzzy normed spaces and related Tauberian theorems, Soft Comput., 25 (2021) 2315-2323.
  • [21] E. Yavuz, Tauberian theorems for statistical Cesaro and statistical logarithmic summability of sequences in intuitionistic fuzzy normed spaces, J. Intell. Fuzzy Syst., 40(6) (2021), 12433-12442.
  • [22] E. Savaş, On lacunary statistically convergent double sequences of fuzzy numbers, Appl. Math. Lett., 21(2) (2008), 134-141.
  • [23] E. Savaş, On some double lacunary sequence spaces of fuzzy numbers, Math. Comput. Appl. 15(3) (2010), 439-448.
  • [24] E. Savaş, V. Karakaya, Some new sequence spaces defined by lacunary sequences, Math. Slovaca, 57(4) (2007), 393-399.
  • [25] M. R. Türkmen, M. Çınar, Lacunary statistical convergence in fuzzy normed linear spaces, Appl. Comput. Math., 6(5) (2017), 233-237.
  • [26] M. R. Türkmen, M. Çınar, l-statistical convergence in fuzzy normed linear spaces, J. Intell. Fuzzy Syst., 34(6) (2018), 4023-4030.
  • [27] U. Ulusu, E. Dündar, I-lacunary statistical convergence of sequences of sets, Filomat, 28(8) (2014), 1567-1574.
  • [28] F. Nuray, Lacunary statistical convergence of sequences of fuzzy numbers, Fuzzy Sets Syst., 99 (3) (1998), 353-355.
  • [29] M. Mursaleen, S. A. Mohiuddine, On lacunary statistical convergence with respect to the intuitionistic fuzzy normed space, J. Comput. Appl. Math., 233 (2009), 142-149.
  • [30] E. Dündar, Ö. Talo, I2-convergence of double sequences of fuzzy numbers, Iran. J. Fuzzy Syst., 10(3) (2013), 37-50.
  • [31] E. Dündar, Ö. Talo, I2-Cauchy double sequences of fuzzy numbers, Gen. Math. Notes, 16(2) (2013), 103-114.
  • [32] E. Dündar, Ö. Talo, F. Başar, Regularly (I2, I)-convergence and regularly (I2, I)-Cauchy double sequences of fuzzy numbers, Internat. J. Anal., 2013(2013) (2013) Article ID: 749684, 7 pages.
  • [33] E. Dündar, M. R. Türkmen, On I2-convergence and I-2 -convergence of double sequences in fuzzy normed spaces, Konuralp J. Math., 7(2) (2019), 405-409.
  • [34] E. Dündar, M. R. Türkmen, On I2-Cauchy double sequences in fuzzy normed spaces, Comm. Adv. Math. Sci., 2(2) (2019), 154-160.
  • [35] M. R. Türkmen, E. Dündar, On Lacunary statistical convergence of double sequences and some properties in fuzzy normed spaces, J. Intell. Fuzzy Syst., 36(2) (2019), 1683-1690.
  • [36] E. Dündar, M. R. Türkmen, N. Pancaroğlu Akın, Regularly ideal convergence of double sequences in fuzzy normed spaces, Bulletin Math. Anal. Appl., 12(2) (2020), 12-26.
  • [37] J. A. Fridy, C. Orhan, Lacunary statistical convergence, Pacific J. Math., 160(1) (1993), 43-51.
  • [38] J. A. Fridy, C. Orhan, Lacunary statistical summability, J. Math. Anal. Appl., 173(2) (1993), 497-504.
  • [39] S. Shakeri, R. Saadati, C. Park, Stability of the quadratic functional equation in non-Archimedean L- fuzzy normed spaces, Int. J. Nonlinear Anal. Appl., 1(2) (2010), 72-83.
  • [40] R. Yapalı, H. Çoşkun, U. Gürdal, Statistical convergence on L􀀀fuzzy normed space, Filomat, Accepted.
  • [41] R. F. Patterson, E Savaş, Lacunary statistical convergence of double sequences, Math. Comm., 10(1) (2005), 55-61.
There are 41 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Reha Yapalı 0000-0003-0665-9087

Husamettin Coşkun 0000-0002-2344-9682

Publication Date April 30, 2023
Submission Date June 8, 2022
Acceptance Date August 2, 2022
Published in Issue Year 2023 Volume: 6 Issue: 1

Cite

APA Yapalı, R., & Coşkun, H. (2023). Lacunary Statistical Convergence for Double Sequences on $\mathscr{L}-$ Fuzzy Normed Space. Journal of Mathematical Sciences and Modelling, 6(1), 24-31. https://doi.org/10.33187/jmsm.1127905
AMA Yapalı R, Coşkun H. Lacunary Statistical Convergence for Double Sequences on $\mathscr{L}-$ Fuzzy Normed Space. Journal of Mathematical Sciences and Modelling. April 2023;6(1):24-31. doi:10.33187/jmsm.1127905
Chicago Yapalı, Reha, and Husamettin Coşkun. “Lacunary Statistical Convergence for Double Sequences on $\mathscr{L}-$ Fuzzy Normed Space”. Journal of Mathematical Sciences and Modelling 6, no. 1 (April 2023): 24-31. https://doi.org/10.33187/jmsm.1127905.
EndNote Yapalı R, Coşkun H (April 1, 2023) Lacunary Statistical Convergence for Double Sequences on $\mathscr{L}-$ Fuzzy Normed Space. Journal of Mathematical Sciences and Modelling 6 1 24–31.
IEEE R. Yapalı and H. Coşkun, “Lacunary Statistical Convergence for Double Sequences on $\mathscr{L}-$ Fuzzy Normed Space”, Journal of Mathematical Sciences and Modelling, vol. 6, no. 1, pp. 24–31, 2023, doi: 10.33187/jmsm.1127905.
ISNAD Yapalı, Reha - Coşkun, Husamettin. “Lacunary Statistical Convergence for Double Sequences on $\mathscr{L}-$ Fuzzy Normed Space”. Journal of Mathematical Sciences and Modelling 6/1 (April 2023), 24-31. https://doi.org/10.33187/jmsm.1127905.
JAMA Yapalı R, Coşkun H. Lacunary Statistical Convergence for Double Sequences on $\mathscr{L}-$ Fuzzy Normed Space. Journal of Mathematical Sciences and Modelling. 2023;6:24–31.
MLA Yapalı, Reha and Husamettin Coşkun. “Lacunary Statistical Convergence for Double Sequences on $\mathscr{L}-$ Fuzzy Normed Space”. Journal of Mathematical Sciences and Modelling, vol. 6, no. 1, 2023, pp. 24-31, doi:10.33187/jmsm.1127905.
Vancouver Yapalı R, Coşkun H. Lacunary Statistical Convergence for Double Sequences on $\mathscr{L}-$ Fuzzy Normed Space. Journal of Mathematical Sciences and Modelling. 2023;6(1):24-31.

29237    Journal of Mathematical Sciences and Modelling 29238

                   29233

Creative Commons License The published articles in JMSM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.