The concept of $\star$-metric, based on the relaxation of triangle inequality of metric axioms by using a t-definer, was introduced by Khatami and Mirzavaziri. This paper extends and generalizes some well-known results of classical metric space. Considering the definition of $\star$-metric space, it studies the notion of a closed ball. The paper proves some results related to closed sets, convergent sequences, Cauchy sequences, and the diameter of a set. This paper contains the study on the metrizability of $\star$-metric space and provides an alternative approach to the proof of metrizability for $\star$-metric space using the famous `Niemytski and Wilson's metrization theorem'.
Birincil Dil | İngilizce |
---|---|
Konular | Operatör Cebirleri ve Fonksiyonel Analiz |
Bölüm | Articles |
Yazarlar | |
Yayımlanma Tarihi | 31 Aralık 2023 |
Yayımlandığı Sayı | Yıl 2023 |
As of 2021, JNRS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).