Araştırma Makalesi
BibTex RIS Kaynak Göster

An investigation of the enzymatic oligomerization of nitro-substituted phenylene diamine: Thermal and fluorescence properties

Yıl 2024, , 153 - 164, 31.08.2024
https://doi.org/10.54187/jnrs.1527152

Öz

2-nitro-p-phenylenediamine, an aromatic diamine, was studied for its oxidative oligomerization with H2O2 using enzyme-catalyzed oligomer synthesis. Characterization of molecular structures was performed utilizing ultraviolet-visible (UV-Vis) spectrophotometer, Fourier-transform infrared spectroscopy (FT-IR), and nuclear magnetic resonance (NMR) techniques, identifying phenazine-bridged oligomer resulting from the enzymatic oligomerization process. Based on the results of gel permeation chromatography (GPC) analysis, the synthesized compound was identified as being in an oligomeric form. Conversely, the number of repeating units, as determined by Mw, was found to be 28. The solvent effect on the optical features of the synthesized oligomer in polar solvents was analyzed. The degradation of phenazine-type structures in the oligomer occurred at higher temperatures than that of the monomer. Under visible light excitation, the oligomer exhibited green light emission with a quantum yield (QY) of 6.2% in N,N-dimethylformamide (DMF). 2-nitro-p-phenylenediamine was readily oxidized into an oligomer with ortho-coupled constitutional units, having a lower electrochemical band gap than the monomer, via the enzymatic oligomerization route. Scanning electron microscopy revealed that enzyme-catalyzed oxidation of monomers exhibited a spongy morphology with some pores

Etik Beyan

No approval from the Board of Ethics is required.

Kaynakça

  • T. Qin, L. Deng, P. Zhang, M. Tang, C. Li, H. Xie, S. Huang, X. Gao, Enhancement of Electrochromic Properties of Polyaniline Induced by Copper Ions, Nanoscale Research Letters 17 (2022) Article Number 51 13 pages.
  • K. Chiba, T. Ohsaka, N. Oyama, Electrode kinetics of electroactive electropolymerized polymers deposited on graphite electrode surfaces, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 217 (2) (1987) 239-251.
  • G. E. J. Garion, S. Li, N. K. Obhi, C. N. Jarrett-Wilkins, D. S. Seferos, Programmable assembly of π- conjugated polymers, Advanced Materials 33 (46) (2021) Article Number 2006287 21 pages.
  • M. Li, X. Zhang, S. Zhen, J. Xu, Multichannel transport in conjugated polymers based on through-space conjugated naphthalene, New Journal of Chemistry 45 (2021) 1795-1799.
  • A. Khosravi, M. Vossoughi, S. Shahrokhian, Iran Alemzadeh, HRP-dendron nanoparticles: the efficient biocatalyst for enzymatic polymerization of poly (2,5-dimethoxyaniline), Journal of Molecular Catalysis B: Enzymatic 90 (2013) 139-143.
  • A. Douka, S. Vouyiouka, L. M. Papaspyridi, C. D. Papaspyrides, A review on enzymatic polymerization to produce polycondensation polymers: the case of aliphatic polyesters, polyamides and polyester amides, Progress in Polymer Science 79 (2018) 1-25.
  • I. Sapurina, J. Stejskal, The mechanism of the oxidative polymerization of aniline and the formation of supramolecular polyaniline structures, Polymer International 57 (12) (2008) 1295-1325.
  • X. G. Li, X. L. Ma, J. Sun, M. R. Huang, Powerful reactive sorption of Silver(I) and Mercury(Π) onto Poly(o-phenylenediamine) microparticles, Langmuir 25 (2009) 1675-1684.
  • A. G. El-Shekeil, H. A. Al-Saady, F. A. Al-Yusufy, Synthesis and characterization of some soluble conducting polyazomethine polymers, Polymer International 44 (1) (1997) 78-82.
  • S. Kobayashi, A. Makino, Enzymatic polymer synthesis: An opportunity for green polymer chemistry, Chemical Reviews 109 (11) (2009) 5288-5353.
  • P. Xu, A. Singh, D. L. Kaplan, Enzymatic catalysis in the synthesis of polyanilines and derivatives of polyanilines, in: S. Kobayashi, H. Ritter, D. Kaplan (Eds), Enzyme-Catalyzed Synthesis of Polymers, Vol 194 of Advances in Polymer Science, Springer, Berlin, Heidelberg, 2006, pp. 69-94.
  • E. N. Konyushenko, J. Stejskal, I. Šeděnková, M. Trchová, I. Sapurina, M. Cieslar, J. Proke, Polyaniline nanotubes: conditions of formation, Polymer International 55 (1) (2006) 31-39.
  • R. Cervini, X. C., Li, G. W. C., Spencer, A. B., Holme, S. C. Moratti, R. H. Friend, Electrochemical and optical studies of PPV derivatives and poly(aromatic oxadiazoles), Synthetic Metals 84 (1997) 359-360.
  • L. L. Wu, J. Luo, Z. H. Lin, Spectroelectrochemical studies of poly-o-phenylamine. Part 1. In situ resonance Raman spectroscopy, Journal of Physical Chemistry B 112 (23) (2008) 6976-6987.
  • H. Yang, D. O. Wipf, A. J. Bard, Application of rapid scan cyclic voltammetry to a study of the oxidation and dimerization of N,N-dimethylaniline in acetonitrile, Journal of Electroanalytical Chemistry 331 (1-2) (1992) 913-924.
  • A. T. R. Williams, S. A. Winfield, J. N. Miller, Relative fluorescence quantum yields using a computer-controlled luminescence spectrometer, Analyst 108 (1290) (1983) 1067-1071.
  • D. W. van Krevelen, Some basic aspects of flame resistance of polymeric materials, Polymer 16 (8) (1975) 615-620.
  • İ. Kaya, R. E. İriş, H. K. Yağmur, Synthesis and characterization of cage structured flame-resistant melamine and pentaerythritol based polymer networks, Journal of Polymer Research 30 (2023) Article Number 388 15 pages.
Yıl 2024, , 153 - 164, 31.08.2024
https://doi.org/10.54187/jnrs.1527152

Öz

Kaynakça

  • T. Qin, L. Deng, P. Zhang, M. Tang, C. Li, H. Xie, S. Huang, X. Gao, Enhancement of Electrochromic Properties of Polyaniline Induced by Copper Ions, Nanoscale Research Letters 17 (2022) Article Number 51 13 pages.
  • K. Chiba, T. Ohsaka, N. Oyama, Electrode kinetics of electroactive electropolymerized polymers deposited on graphite electrode surfaces, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 217 (2) (1987) 239-251.
  • G. E. J. Garion, S. Li, N. K. Obhi, C. N. Jarrett-Wilkins, D. S. Seferos, Programmable assembly of π- conjugated polymers, Advanced Materials 33 (46) (2021) Article Number 2006287 21 pages.
  • M. Li, X. Zhang, S. Zhen, J. Xu, Multichannel transport in conjugated polymers based on through-space conjugated naphthalene, New Journal of Chemistry 45 (2021) 1795-1799.
  • A. Khosravi, M. Vossoughi, S. Shahrokhian, Iran Alemzadeh, HRP-dendron nanoparticles: the efficient biocatalyst for enzymatic polymerization of poly (2,5-dimethoxyaniline), Journal of Molecular Catalysis B: Enzymatic 90 (2013) 139-143.
  • A. Douka, S. Vouyiouka, L. M. Papaspyridi, C. D. Papaspyrides, A review on enzymatic polymerization to produce polycondensation polymers: the case of aliphatic polyesters, polyamides and polyester amides, Progress in Polymer Science 79 (2018) 1-25.
  • I. Sapurina, J. Stejskal, The mechanism of the oxidative polymerization of aniline and the formation of supramolecular polyaniline structures, Polymer International 57 (12) (2008) 1295-1325.
  • X. G. Li, X. L. Ma, J. Sun, M. R. Huang, Powerful reactive sorption of Silver(I) and Mercury(Π) onto Poly(o-phenylenediamine) microparticles, Langmuir 25 (2009) 1675-1684.
  • A. G. El-Shekeil, H. A. Al-Saady, F. A. Al-Yusufy, Synthesis and characterization of some soluble conducting polyazomethine polymers, Polymer International 44 (1) (1997) 78-82.
  • S. Kobayashi, A. Makino, Enzymatic polymer synthesis: An opportunity for green polymer chemistry, Chemical Reviews 109 (11) (2009) 5288-5353.
  • P. Xu, A. Singh, D. L. Kaplan, Enzymatic catalysis in the synthesis of polyanilines and derivatives of polyanilines, in: S. Kobayashi, H. Ritter, D. Kaplan (Eds), Enzyme-Catalyzed Synthesis of Polymers, Vol 194 of Advances in Polymer Science, Springer, Berlin, Heidelberg, 2006, pp. 69-94.
  • E. N. Konyushenko, J. Stejskal, I. Šeděnková, M. Trchová, I. Sapurina, M. Cieslar, J. Proke, Polyaniline nanotubes: conditions of formation, Polymer International 55 (1) (2006) 31-39.
  • R. Cervini, X. C., Li, G. W. C., Spencer, A. B., Holme, S. C. Moratti, R. H. Friend, Electrochemical and optical studies of PPV derivatives and poly(aromatic oxadiazoles), Synthetic Metals 84 (1997) 359-360.
  • L. L. Wu, J. Luo, Z. H. Lin, Spectroelectrochemical studies of poly-o-phenylamine. Part 1. In situ resonance Raman spectroscopy, Journal of Physical Chemistry B 112 (23) (2008) 6976-6987.
  • H. Yang, D. O. Wipf, A. J. Bard, Application of rapid scan cyclic voltammetry to a study of the oxidation and dimerization of N,N-dimethylaniline in acetonitrile, Journal of Electroanalytical Chemistry 331 (1-2) (1992) 913-924.
  • A. T. R. Williams, S. A. Winfield, J. N. Miller, Relative fluorescence quantum yields using a computer-controlled luminescence spectrometer, Analyst 108 (1290) (1983) 1067-1071.
  • D. W. van Krevelen, Some basic aspects of flame resistance of polymeric materials, Polymer 16 (8) (1975) 615-620.
  • İ. Kaya, R. E. İriş, H. K. Yağmur, Synthesis and characterization of cage structured flame-resistant melamine and pentaerythritol based polymer networks, Journal of Polymer Research 30 (2023) Article Number 388 15 pages.
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Malzemelerin Optik Özellikleri, Polimerizasyon Mekanizmaları
Bölüm Articles
Yazarlar

Feyza Kolcu 0000-0002-2004-8859

Erken Görünüm Tarihi 30 Ağustos 2024
Yayımlanma Tarihi 31 Ağustos 2024
Gönderilme Tarihi 2 Ağustos 2024
Kabul Tarihi 30 Ağustos 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Kolcu, F. (2024). An investigation of the enzymatic oligomerization of nitro-substituted phenylene diamine: Thermal and fluorescence properties. Journal of New Results in Science, 13(2), 153-164. https://doi.org/10.54187/jnrs.1527152
AMA Kolcu F. An investigation of the enzymatic oligomerization of nitro-substituted phenylene diamine: Thermal and fluorescence properties. JNRS. Ağustos 2024;13(2):153-164. doi:10.54187/jnrs.1527152
Chicago Kolcu, Feyza. “An Investigation of the Enzymatic Oligomerization of Nitro-Substituted Phenylene Diamine: Thermal and Fluorescence Properties”. Journal of New Results in Science 13, sy. 2 (Ağustos 2024): 153-64. https://doi.org/10.54187/jnrs.1527152.
EndNote Kolcu F (01 Ağustos 2024) An investigation of the enzymatic oligomerization of nitro-substituted phenylene diamine: Thermal and fluorescence properties. Journal of New Results in Science 13 2 153–164.
IEEE F. Kolcu, “An investigation of the enzymatic oligomerization of nitro-substituted phenylene diamine: Thermal and fluorescence properties”, JNRS, c. 13, sy. 2, ss. 153–164, 2024, doi: 10.54187/jnrs.1527152.
ISNAD Kolcu, Feyza. “An Investigation of the Enzymatic Oligomerization of Nitro-Substituted Phenylene Diamine: Thermal and Fluorescence Properties”. Journal of New Results in Science 13/2 (Ağustos 2024), 153-164. https://doi.org/10.54187/jnrs.1527152.
JAMA Kolcu F. An investigation of the enzymatic oligomerization of nitro-substituted phenylene diamine: Thermal and fluorescence properties. JNRS. 2024;13:153–164.
MLA Kolcu, Feyza. “An Investigation of the Enzymatic Oligomerization of Nitro-Substituted Phenylene Diamine: Thermal and Fluorescence Properties”. Journal of New Results in Science, c. 13, sy. 2, 2024, ss. 153-64, doi:10.54187/jnrs.1527152.
Vancouver Kolcu F. An investigation of the enzymatic oligomerization of nitro-substituted phenylene diamine: Thermal and fluorescence properties. JNRS. 2024;13(2):153-64.


TR Dizin 31688

EBSCO30456


Electronic Journals Library EZB   30356

 DOAJ   30355                                             

WorldCat  30357                                             303573035530355

Academindex   30358

SOBİAD   30359

Scilit   30360


29388 As of 2021, JNRS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).