Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2021, , 60 - 66, 31.12.2021
https://doi.org/10.54187/jnrs.989508

Öz

Kaynakça

  • A. F. Horadam, Jacobsthal representation numbers, Fibonacci Quarterly, 34, (1996) 40–54.
  • T. Koshy, Fibonacci and Lucas numbers with applications, John Wiley and Sons Inc., New York, 2001.
  • G. K. Panda, Sequence balancing and cobalancing numbers, Fibonacci Quarterly, 45, (2007) 265–271.
  • A. F. Horadam, Pell identities, Fibonacci Quarterly, 9, (1971) 245–252.
  • S. Halici, On some inequality and Hankel matrices involving Pell, Pell Lucas numbers, Mathematical Reports, 15, (2013) 1–10.
  • G. Bilgici, New generalizations of Fibonacci and Lucas numbers, Applied Mathematical Sciences, 8, (2014) 1429–1437.
  • S. Falcon, A. Plaza, On the Fibonacci k-numbers, Chaos Solitions and Fractals, 32, (2007) 1615–1624.
  • A. Szynal-Liana, , A. Wloch, I. Wloch, On generalized Pell numbers generated by Fibonacci and Lucas numbers, Ars Combinatoria, 115, (2014) 411–423.
  • D. Tasci , E. Sevgi , Bi-periodic balancing numbers, Journal of Science and Arts, 50, (2020) 75–84.
  • O.M. Yayenie, A. Edson, New generalization of Fibonacci sequences and extended Binet’s formula, Integers, 9, (2009) 639–654.
  • L. Trojnar-Spelina, I. Wloch, On generalized Pell and Pell Lucas numbers, Iranian Journal of Science and Technology, Transactions A: Science, 43, (2019) 2871–2877.
  • P. Vasco, P. Catarino, H. Campos„ A. P. Aires, A. Borges, k-Pell, k-Pell-Lucas and modified k-Pell Numbers: Some identities and norms of Hankel matrices, International Journal of Mathematical Analysis, 9,(2015) 31-37.

On some identities and Hankel matrices norms involving new defined generalized modified pell numbers

Yıl 2021, , 60 - 66, 31.12.2021
https://doi.org/10.54187/jnrs.989508

Öz

The aim of this paper is to introduce a generalization of Modified Pell numbers. Some identities about this new sequence are obtained and also investigated some relationships with another sequence. Finally, using these sequences the row and column norms of the Hankel matrices are presented.

Kaynakça

  • A. F. Horadam, Jacobsthal representation numbers, Fibonacci Quarterly, 34, (1996) 40–54.
  • T. Koshy, Fibonacci and Lucas numbers with applications, John Wiley and Sons Inc., New York, 2001.
  • G. K. Panda, Sequence balancing and cobalancing numbers, Fibonacci Quarterly, 45, (2007) 265–271.
  • A. F. Horadam, Pell identities, Fibonacci Quarterly, 9, (1971) 245–252.
  • S. Halici, On some inequality and Hankel matrices involving Pell, Pell Lucas numbers, Mathematical Reports, 15, (2013) 1–10.
  • G. Bilgici, New generalizations of Fibonacci and Lucas numbers, Applied Mathematical Sciences, 8, (2014) 1429–1437.
  • S. Falcon, A. Plaza, On the Fibonacci k-numbers, Chaos Solitions and Fractals, 32, (2007) 1615–1624.
  • A. Szynal-Liana, , A. Wloch, I. Wloch, On generalized Pell numbers generated by Fibonacci and Lucas numbers, Ars Combinatoria, 115, (2014) 411–423.
  • D. Tasci , E. Sevgi , Bi-periodic balancing numbers, Journal of Science and Arts, 50, (2020) 75–84.
  • O.M. Yayenie, A. Edson, New generalization of Fibonacci sequences and extended Binet’s formula, Integers, 9, (2009) 639–654.
  • L. Trojnar-Spelina, I. Wloch, On generalized Pell and Pell Lucas numbers, Iranian Journal of Science and Technology, Transactions A: Science, 43, (2019) 2871–2877.
  • P. Vasco, P. Catarino, H. Campos„ A. P. Aires, A. Borges, k-Pell, k-Pell-Lucas and modified k-Pell Numbers: Some identities and norms of Hankel matrices, International Journal of Mathematical Analysis, 9,(2015) 31-37.
Toplam 12 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Articles
Yazarlar

Gül Özkan Kızılırmak 0000-0003-3263-8685

Yayımlanma Tarihi 31 Aralık 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Özkan Kızılırmak, G. (2021). On some identities and Hankel matrices norms involving new defined generalized modified pell numbers. Journal of New Results in Science, 10(3), 60-66. https://doi.org/10.54187/jnrs.989508
AMA Özkan Kızılırmak G. On some identities and Hankel matrices norms involving new defined generalized modified pell numbers. JNRS. Aralık 2021;10(3):60-66. doi:10.54187/jnrs.989508
Chicago Özkan Kızılırmak, Gül. “On Some Identities and Hankel Matrices Norms Involving New Defined Generalized Modified Pell Numbers”. Journal of New Results in Science 10, sy. 3 (Aralık 2021): 60-66. https://doi.org/10.54187/jnrs.989508.
EndNote Özkan Kızılırmak G (01 Aralık 2021) On some identities and Hankel matrices norms involving new defined generalized modified pell numbers. Journal of New Results in Science 10 3 60–66.
IEEE G. Özkan Kızılırmak, “On some identities and Hankel matrices norms involving new defined generalized modified pell numbers”, JNRS, c. 10, sy. 3, ss. 60–66, 2021, doi: 10.54187/jnrs.989508.
ISNAD Özkan Kızılırmak, Gül. “On Some Identities and Hankel Matrices Norms Involving New Defined Generalized Modified Pell Numbers”. Journal of New Results in Science 10/3 (Aralık 2021), 60-66. https://doi.org/10.54187/jnrs.989508.
JAMA Özkan Kızılırmak G. On some identities and Hankel matrices norms involving new defined generalized modified pell numbers. JNRS. 2021;10:60–66.
MLA Özkan Kızılırmak, Gül. “On Some Identities and Hankel Matrices Norms Involving New Defined Generalized Modified Pell Numbers”. Journal of New Results in Science, c. 10, sy. 3, 2021, ss. 60-66, doi:10.54187/jnrs.989508.
Vancouver Özkan Kızılırmak G. On some identities and Hankel matrices norms involving new defined generalized modified pell numbers. JNRS. 2021;10(3):60-6.

Cited By

On the Bi-Periodic Mersenne Sequence
Fundamental Journal of Mathematics and Applications
https://doi.org/10.33401/fujma.1078410


TR Dizin 31688

EBSCO30456


Electronic Journals Library EZB   30356

 DOAJ   30355                                             

WorldCat  30357                                             303573035530355

Academindex   30358

SOBİAD   30359

Scilit   30360


29388 As of 2021, JNRS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).