Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2021, Cilt: 10 Sayı: 3, 89 - 97, 31.12.2021
https://doi.org/10.54187/jnrs.1013381

Öz

Kaynakça

  • C. Kittel, Introduction to solid state physics, John Wiley & Sons. Inc., Sixth Edition, New York, 1986.
  • N. W. Ashcroft, N.D. Mermin, Solid state physics, Philadelphia Pa., New York, 1976.
  • H. P. Myers, Introductory solid state physics. CRC Press, London, 1997.
  • E. O. Kane, Band structure of indium antimonide, Journal of Physics and Chemistry of Solids, 1(4), (1957) 249–261.
  • B. Šantić, B., U. V. Desnica, Thermoelectric effect spectroscopy of deep levels—application to semi‐insulating GaAs, Applied Physics Letters, 56(26), (1990) 2636–2638.
  • L. Zhu, R. Ma, L. Sheng, M. Liu, D. N. Sheng, Universal thermoelectric effect of Dirac fermions in graphene, Physical Review Letters, 104(7), (2010) 076804.
  • D. Segal, Thermoelectric effect in molecular junctions: A tool for revealing transport mechanisms, Physical Review B, 72(16), (2005) 165426.
  • P. E. Nielsen, P. L. Taylor, Theory of thermoelectric effects in metals and alloys, Physical Review B, 10(10), (1974) 4061.
  • G. Sansone, A. Ferretti, L. Maschio, Ab initio electronic transport and thermoelectric properties of solids from full and range-separated hybrid functionals, The Journal of Chemical Physics, 147(11), (2017) 114101.
  • B. M. Askerov, F. M. Gashimzade, Determination of parameters of degenerate semiconductors, Physica Status Solidi (b), 21(2), (1967) 155–158.
  • B. M. Askerov, Kinetic effects in semiconductors, Science, Leningrad, 1970.
  • B. M. Askerov, Electron transport phenomena in semiconductors. World Scientific, London, 1994.
  • H. S. Kim, Z. M. Gibbs, Y. Tang, H. Wang, G. J. Snyder, Characterization of Lorenz number with Seebeck coefficient measurement, APL materials, 3(4), (2015) 041506.
  • M. Thesberg, H. Kosina, N. Neophytou, On the Lorenz number of multiband materials, Physical Review B, 95(12), (2017) 125206.
  • P. J. Price, Theory of transport effects in semiconductors: Thermoelectricity, Physical Review, 104(5), (1956) 1223.
  • A. Putatunda, D. J. Singh, Lorenz number in relation to estimates based on the Seebeck coefficient, Materials Today Physics, 8, (2009) 49–55.
  • O. S. Gryazanov, Tables for the calculation of kinetic coefficients in semiconductor, Nauka, Leningrad, 1971.
  • W. Zawadzki, R. Kowalczyk, J. Kolodziejczak, The Generalized Fermi‐Dirac integrals, Physica Status Solidi (b), 10(2), (1965) 513–518.
  • G. Rzadkowski, S. Łepkowski, A generalization of the Euler-Maclaurin summation formula: an application to numerical computation of the Fermi-Dirac integrals, Journal of Scientific Computing, 35(1), (2008) 63–74.
  • I. I. Guseinov, B. A. Mamedov, B. A. Unified treatment for accurate and fast evaluation of the Fermi–Dirac functions, Chinese Physics B, 19(5), (2010) 050501.
  • B. A. Mamedov, E. Copuroglu, Unified analytical treatments of the two-parameter Fermi functions using binomial expansion theorem and incomplete gamma functions, Solid State Communications, 245, (2016) 42–49.
  • I. M. Ryzhik, I. S. Gradshteyn, Tables of integrals and sums, series, and products, Academic Press, New York, 1980.
  • E. Çopuroğlu, I. M. Askerov, A. Aslan, Analytical calculation of temperature dependence of the Lorenz number in semiconductors, Journal of Science and Arts, 20(1), (2020)197–202.
  • M. Shur, Physics of semiconductor devices, Englewood Cliffs, Prentice-Hall, 1990.

Investigation of the Lorenz number and the carrier concentration of the GaAs semiconductor depending on temperature

Yıl 2021, Cilt: 10 Sayı: 3, 89 - 97, 31.12.2021
https://doi.org/10.54187/jnrs.1013381

Öz

As is known, semiconductors are insulators under normal conditions but can become conductive with external excitation. Considering the effects of acting on these materials, the number of free electrons and the electrical conductivity will increase with increasing temperature. The increase in the concentration of free electrons in the semiconductor can be shown as the increase in electrical conductivity. If a semiconductor is exposed to an electric field with increasing concentration, we can have an idea about how the number of free electrons or the speed of free electrons will be affected. It is well known that it is necessary to calculate two-parameter Fermi functions to solve the properties of kinetic effects and electron transport phenomena in semiconductors. Effective methods have been developed for the calculation of two-parameter Fermi functions in literature. In this study, analytical calculations for the Lorenz number and the carrier concentration of the GaAs semiconductor were made using the two-parameter Fermi function.

Kaynakça

  • C. Kittel, Introduction to solid state physics, John Wiley & Sons. Inc., Sixth Edition, New York, 1986.
  • N. W. Ashcroft, N.D. Mermin, Solid state physics, Philadelphia Pa., New York, 1976.
  • H. P. Myers, Introductory solid state physics. CRC Press, London, 1997.
  • E. O. Kane, Band structure of indium antimonide, Journal of Physics and Chemistry of Solids, 1(4), (1957) 249–261.
  • B. Šantić, B., U. V. Desnica, Thermoelectric effect spectroscopy of deep levels—application to semi‐insulating GaAs, Applied Physics Letters, 56(26), (1990) 2636–2638.
  • L. Zhu, R. Ma, L. Sheng, M. Liu, D. N. Sheng, Universal thermoelectric effect of Dirac fermions in graphene, Physical Review Letters, 104(7), (2010) 076804.
  • D. Segal, Thermoelectric effect in molecular junctions: A tool for revealing transport mechanisms, Physical Review B, 72(16), (2005) 165426.
  • P. E. Nielsen, P. L. Taylor, Theory of thermoelectric effects in metals and alloys, Physical Review B, 10(10), (1974) 4061.
  • G. Sansone, A. Ferretti, L. Maschio, Ab initio electronic transport and thermoelectric properties of solids from full and range-separated hybrid functionals, The Journal of Chemical Physics, 147(11), (2017) 114101.
  • B. M. Askerov, F. M. Gashimzade, Determination of parameters of degenerate semiconductors, Physica Status Solidi (b), 21(2), (1967) 155–158.
  • B. M. Askerov, Kinetic effects in semiconductors, Science, Leningrad, 1970.
  • B. M. Askerov, Electron transport phenomena in semiconductors. World Scientific, London, 1994.
  • H. S. Kim, Z. M. Gibbs, Y. Tang, H. Wang, G. J. Snyder, Characterization of Lorenz number with Seebeck coefficient measurement, APL materials, 3(4), (2015) 041506.
  • M. Thesberg, H. Kosina, N. Neophytou, On the Lorenz number of multiband materials, Physical Review B, 95(12), (2017) 125206.
  • P. J. Price, Theory of transport effects in semiconductors: Thermoelectricity, Physical Review, 104(5), (1956) 1223.
  • A. Putatunda, D. J. Singh, Lorenz number in relation to estimates based on the Seebeck coefficient, Materials Today Physics, 8, (2009) 49–55.
  • O. S. Gryazanov, Tables for the calculation of kinetic coefficients in semiconductor, Nauka, Leningrad, 1971.
  • W. Zawadzki, R. Kowalczyk, J. Kolodziejczak, The Generalized Fermi‐Dirac integrals, Physica Status Solidi (b), 10(2), (1965) 513–518.
  • G. Rzadkowski, S. Łepkowski, A generalization of the Euler-Maclaurin summation formula: an application to numerical computation of the Fermi-Dirac integrals, Journal of Scientific Computing, 35(1), (2008) 63–74.
  • I. I. Guseinov, B. A. Mamedov, B. A. Unified treatment for accurate and fast evaluation of the Fermi–Dirac functions, Chinese Physics B, 19(5), (2010) 050501.
  • B. A. Mamedov, E. Copuroglu, Unified analytical treatments of the two-parameter Fermi functions using binomial expansion theorem and incomplete gamma functions, Solid State Communications, 245, (2016) 42–49.
  • I. M. Ryzhik, I. S. Gradshteyn, Tables of integrals and sums, series, and products, Academic Press, New York, 1980.
  • E. Çopuroğlu, I. M. Askerov, A. Aslan, Analytical calculation of temperature dependence of the Lorenz number in semiconductors, Journal of Science and Arts, 20(1), (2020)197–202.
  • M. Shur, Physics of semiconductor devices, Englewood Cliffs, Prentice-Hall, 1990.
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Articles
Yazarlar

Ebru Çopuroğlu 0000-0002-4363-5730

Erken Görünüm Tarihi 30 Aralık 2021
Yayımlanma Tarihi 31 Aralık 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 10 Sayı: 3

Kaynak Göster

APA Çopuroğlu, E. (2021). Investigation of the Lorenz number and the carrier concentration of the GaAs semiconductor depending on temperature. Journal of New Results in Science, 10(3), 89-97. https://doi.org/10.54187/jnrs.1013381
AMA Çopuroğlu E. Investigation of the Lorenz number and the carrier concentration of the GaAs semiconductor depending on temperature. JNRS. Aralık 2021;10(3):89-97. doi:10.54187/jnrs.1013381
Chicago Çopuroğlu, Ebru. “Investigation of the Lorenz Number and the Carrier Concentration of the GaAs Semiconductor Depending on Temperature”. Journal of New Results in Science 10, sy. 3 (Aralık 2021): 89-97. https://doi.org/10.54187/jnrs.1013381.
EndNote Çopuroğlu E (01 Aralık 2021) Investigation of the Lorenz number and the carrier concentration of the GaAs semiconductor depending on temperature. Journal of New Results in Science 10 3 89–97.
IEEE E. Çopuroğlu, “Investigation of the Lorenz number and the carrier concentration of the GaAs semiconductor depending on temperature”, JNRS, c. 10, sy. 3, ss. 89–97, 2021, doi: 10.54187/jnrs.1013381.
ISNAD Çopuroğlu, Ebru. “Investigation of the Lorenz Number and the Carrier Concentration of the GaAs Semiconductor Depending on Temperature”. Journal of New Results in Science 10/3 (Aralık 2021), 89-97. https://doi.org/10.54187/jnrs.1013381.
JAMA Çopuroğlu E. Investigation of the Lorenz number and the carrier concentration of the GaAs semiconductor depending on temperature. JNRS. 2021;10:89–97.
MLA Çopuroğlu, Ebru. “Investigation of the Lorenz Number and the Carrier Concentration of the GaAs Semiconductor Depending on Temperature”. Journal of New Results in Science, c. 10, sy. 3, 2021, ss. 89-97, doi:10.54187/jnrs.1013381.
Vancouver Çopuroğlu E. Investigation of the Lorenz number and the carrier concentration of the GaAs semiconductor depending on temperature. JNRS. 2021;10(3):89-97.


TR Dizin 31688

EBSCO30456


Electronic Journals Library EZB   30356

 DOAJ   30355                                             

WorldCat  30357                                             303573035530355

Academindex   30358

SOBİAD   30359

Scilit   30360


29388 As of 2021, JNRS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).