Research Article
BibTex RIS Cite

CHARACTERIZATION OF WELDING ZONE OF SHIPBUILDING STEEL UNDERWATER WELDED AT DIFFERENT DEPTHS

Year 2021, Volume: 17 Issue: 2, 395 - 411, 08.11.2021

Abstract

Although welding operations are mostly carried out in atmospheric conditions in shipbuilding, underwater welding is also used intensively in order to speed up the repair processes in the underwater parts of the ships. It is known that due to the nature of the underwater welding, there are significant differences in the weld area compared to the weld made under atmospheric conditions. The most important factor that creates this difference is that the cooling rates achieved after welding contain significant differences compared to welding performed under atmospheric conditions. On the other hand, it is known that the depth of the underwater welding has a significant effect on this cooling rate. In the literature, it is seen that studies on underwater welding are extremely limited. On the other hand, no study has been found that has examined the effect of depth on the microstructure and mechanical properties during underwater welding of steels used in shipbuilding. In this context, in this study, a steel used extensively in shipbuilding was joint with atmospheric conditions welding and underwater welding (two varying depths), and the microstructure and mechanical properties of the welded area were examined comparatively.

Thanks

The authors would like to thank to Professor Gencaga Purcek (Mechanical Engineering Department, Karadeniz Technical University) for sharing his laboratory facilities.

References

  • Bhadeshia, H.K.D.H. & Svensson, L. E. (1993). "Modelling the evolution of microstructure in steel weld metal". Mathematical Modelling of Weld Phenomena, 1, 109-182.
  • Boumerzoug, Z., Derfouf, C. & Baudin, T. (2010). "Effect of Welding on Microstructure and Mechanical Properties of an Industrial Low Carbon Steel". Engineering, 2(7), 502-506. doi:10.4236/eng.2010.27066.
  • David, S. A, Babu, S. S. & Vitek, J. M. (2003). "Welding: Solidification and Microstructure". Jom, 55(6), 14-20. doi:10.1007/s11837-003-0134-7.
  • Eroğlu, M., Aksoy, M. & Orhan, N. (1999). "Effect of coarse initial grain size on microstructure and mechanical properties of weld metal and HAZ of a low carbon steel". Materials Science & Engineering: A, 269(1-2), 59-66. doi:10.1016/S0921-5093(99)00137-9.
  • Gharibshahiyan, E., Raouf, A. H., Parvin, N. & Rahimian, M. (2011). "The effect of microstructure on hardness and toughness of low carbon welded steel using inert gas welding". Materials & Design, 32(4), 2042-2048. doi: /10.1016/j.matdes.2010.11.056.
  • Gould, J. E., Khurana, S. P. & Li, T. (2006). "Predictions of microstructures when welding automotive advanced high-strength steels". Welding Journal, 85(5), 111-116.
  • Grong, O. & Matlock, D. K. (1986). "Microstructural development in mild and low-alloy steel weld metals". International Metals Reviews, 31(1), 27-48. doi:10.1179/imtr.1986.31.1.27.
  • Hajian, M., Abdollah-zadeh, A., Rezaei-Nejad, S. S., Assadi, H., Hadavi, S. M.M., Chung, K. & Shokouhimehr, M. (2015). "Microstructure and mechanical properties of friction stir processed AISI 316L stainless steel". Materials & Design, 67 (Supplement C), 82-94. doi:10.1016/j.matdes.2014.10.082.
  • Houldcroft, P. T. (1990). Submerged-arc welding. Woodhead Publishing.
  • İmdat, K., Kaya, Y. & Kahraman, N. (2018). "Grade A Gemi Sacının Örtülü Elektrod Ark Kaynak Yöntemi ile Sualtı ve Atmosferik Şartlarda Birleştirilebilirliğinin Araştırılması". Politeknik Dergisi, 21(3), 543-552.
  • Kanjilal, P., Pal, T.K., & Majumdar, S.K. (2006). ''Combined effect of flux and welding parameters on chemical composition and mechanical properties of submerged arc weld metal''. Journal of Materials Processing Technology, 171(2), 223-231.
  • Kanjilal, P., Pal, T.K., & Majumdar, S.K. (2007). ''Prediction of element transfer in submerged arc welding''. Magnesium, 10, 40.
  • Lars-Erik, S. (2017). Control of microstructures and properties in steel arc welds: CRC press.
  • Lee, C.S., Chandel, R.S., & Seow, H.P. (2000). ''Effect of welding parameters on the size of heat affected zone of submerged arc welding''. Materials and Manufacturing Processes, 15(5), 649-666.
  • Liu, F., Tan, C., Gong, X., Wu, L., Chen, B., Song, X., & Feng, J. (2020). ''A comparative study on microstructure and mechanical properties of HG785D steel joint produced by hybrid laser-MAG welding and laser welding''. Optics & Laser Technology, 128, 106247.
  • Magnabosco, I., Ferro, P., Bonollo, F., & Arnberg, L. (2006). ''An investigation of fusion zone microstructures in electron beam welding of copper–stainless steel''. Materials Science and Engineering: A, 424(1-2), 163-173.
  • McPherson, N.A., Chi, K., & Baker, T.N. (2003). ''Submerged arc welding of stainless steel and the challenge from the laser welding process''. Journal of Materials Processing Technology, 134(2), 174-179.
  • Murugan, N., & Gunaraj, V. (2005). ''Prediction and control of weld bead geometry and shape relationships in submerged arc welding of pipes''. Journal of Materials Processing Technology, 168(3), 478-487.
  • Pandey, N.D, Bharti, A., & Gupta, S.R. (1994). ''Effect of submerged arc welding parameters and fluxes on element transfer behaviour and weld-metal chemistry''. Journal of Materials Processing Technology, 40(1-2), 195-211.
  • Zhang, Z., Jing, H., Xu, L., Han, Y., & Zhao, L. (2016). ''Investigation on microstructure evolution and properties of duplex stainless steel joint multi-pass welded by using different methods''. Materials & Design, 109, 670-685.

FARKLI DERİNLİKLERDE SUALTI KAYNAĞI UYGULANAN GEMİ İNŞA ÇELİĞİNİN KAYNAK BÖLGESİNİN KARAKTERİZASYONU

Year 2021, Volume: 17 Issue: 2, 395 - 411, 08.11.2021

Abstract

Gemi inşaatında kaynak işlemleri yoğunlukla atmosferik şartlarda yapılsa da, gemilerin su altında kalan kısımlarındaki tamir işlemlerini hızlandırmak adına sualtı kaynağı da yoğunlukla kullanılmaktadır. Su altı kaynağının doğası gereği kaynak bölgesinde atmosferik şartlarda yapılan kaynağa göre önemli farklar içerdiği bilinmektedir. Bu farkı oluşturan en önemli etken kaynak sonrasında erişilen soğuma hızlarının atmosferik şartlarda yapılan kaynağa göre önemli farklar içermesidir. Öte yandan bu soğuma hızına su altı kaynağının yapıldığı derinliğin de önemli oranda etki ettiği bilinmektedir. Literatürde sualtı kaynağı ile ilgili çalışmaların son derece sınırlı olduğu görülmektedir. Öte yandan gemi inşaatında kullanılan çeliklerin sualtı kaynağı sırasında derinliğin içyapı ve mekanik özellikler üzerindeki etkisini ayrıntılı olarak incelemiş bir çalışmaya rastlanmamıştır. Bu bağlamda bu çalışmada gemi inşaatında yoğun olarak kullanılan bir çeliğe atmosferik şartlarda ve değişen iki derinlikte sualtı kaynağı yapılarak kaynak bölgesinin içyapı ve mekanik özellikleri (sertlik, mukavamet, eğme ve darbe dayanımı) karşılaştırmalı olarak incelenmiştir.

References

  • Bhadeshia, H.K.D.H. & Svensson, L. E. (1993). "Modelling the evolution of microstructure in steel weld metal". Mathematical Modelling of Weld Phenomena, 1, 109-182.
  • Boumerzoug, Z., Derfouf, C. & Baudin, T. (2010). "Effect of Welding on Microstructure and Mechanical Properties of an Industrial Low Carbon Steel". Engineering, 2(7), 502-506. doi:10.4236/eng.2010.27066.
  • David, S. A, Babu, S. S. & Vitek, J. M. (2003). "Welding: Solidification and Microstructure". Jom, 55(6), 14-20. doi:10.1007/s11837-003-0134-7.
  • Eroğlu, M., Aksoy, M. & Orhan, N. (1999). "Effect of coarse initial grain size on microstructure and mechanical properties of weld metal and HAZ of a low carbon steel". Materials Science & Engineering: A, 269(1-2), 59-66. doi:10.1016/S0921-5093(99)00137-9.
  • Gharibshahiyan, E., Raouf, A. H., Parvin, N. & Rahimian, M. (2011). "The effect of microstructure on hardness and toughness of low carbon welded steel using inert gas welding". Materials & Design, 32(4), 2042-2048. doi: /10.1016/j.matdes.2010.11.056.
  • Gould, J. E., Khurana, S. P. & Li, T. (2006). "Predictions of microstructures when welding automotive advanced high-strength steels". Welding Journal, 85(5), 111-116.
  • Grong, O. & Matlock, D. K. (1986). "Microstructural development in mild and low-alloy steel weld metals". International Metals Reviews, 31(1), 27-48. doi:10.1179/imtr.1986.31.1.27.
  • Hajian, M., Abdollah-zadeh, A., Rezaei-Nejad, S. S., Assadi, H., Hadavi, S. M.M., Chung, K. & Shokouhimehr, M. (2015). "Microstructure and mechanical properties of friction stir processed AISI 316L stainless steel". Materials & Design, 67 (Supplement C), 82-94. doi:10.1016/j.matdes.2014.10.082.
  • Houldcroft, P. T. (1990). Submerged-arc welding. Woodhead Publishing.
  • İmdat, K., Kaya, Y. & Kahraman, N. (2018). "Grade A Gemi Sacının Örtülü Elektrod Ark Kaynak Yöntemi ile Sualtı ve Atmosferik Şartlarda Birleştirilebilirliğinin Araştırılması". Politeknik Dergisi, 21(3), 543-552.
  • Kanjilal, P., Pal, T.K., & Majumdar, S.K. (2006). ''Combined effect of flux and welding parameters on chemical composition and mechanical properties of submerged arc weld metal''. Journal of Materials Processing Technology, 171(2), 223-231.
  • Kanjilal, P., Pal, T.K., & Majumdar, S.K. (2007). ''Prediction of element transfer in submerged arc welding''. Magnesium, 10, 40.
  • Lars-Erik, S. (2017). Control of microstructures and properties in steel arc welds: CRC press.
  • Lee, C.S., Chandel, R.S., & Seow, H.P. (2000). ''Effect of welding parameters on the size of heat affected zone of submerged arc welding''. Materials and Manufacturing Processes, 15(5), 649-666.
  • Liu, F., Tan, C., Gong, X., Wu, L., Chen, B., Song, X., & Feng, J. (2020). ''A comparative study on microstructure and mechanical properties of HG785D steel joint produced by hybrid laser-MAG welding and laser welding''. Optics & Laser Technology, 128, 106247.
  • Magnabosco, I., Ferro, P., Bonollo, F., & Arnberg, L. (2006). ''An investigation of fusion zone microstructures in electron beam welding of copper–stainless steel''. Materials Science and Engineering: A, 424(1-2), 163-173.
  • McPherson, N.A., Chi, K., & Baker, T.N. (2003). ''Submerged arc welding of stainless steel and the challenge from the laser welding process''. Journal of Materials Processing Technology, 134(2), 174-179.
  • Murugan, N., & Gunaraj, V. (2005). ''Prediction and control of weld bead geometry and shape relationships in submerged arc welding of pipes''. Journal of Materials Processing Technology, 168(3), 478-487.
  • Pandey, N.D, Bharti, A., & Gupta, S.R. (1994). ''Effect of submerged arc welding parameters and fluxes on element transfer behaviour and weld-metal chemistry''. Journal of Materials Processing Technology, 40(1-2), 195-211.
  • Zhang, Z., Jing, H., Xu, L., Han, Y., & Zhao, L. (2016). ''Investigation on microstructure evolution and properties of duplex stainless steel joint multi-pass welded by using different methods''. Materials & Design, 109, 670-685.
There are 20 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Dursun Murat Sekban 0000-0002-7493-1081

Abdulhabib Nacar This is me 0000-0002-9820-0021

Publication Date November 8, 2021
Published in Issue Year 2021 Volume: 17 Issue: 2

Cite

APA Sekban, D. M., & Nacar, A. (2021). CHARACTERIZATION OF WELDING ZONE OF SHIPBUILDING STEEL UNDERWATER WELDED AT DIFFERENT DEPTHS. Journal of Naval Sciences and Engineering, 17(2), 395-411.