The main objective of this paper is to use the newly proposed $(p,q;l)$-extended beta function to introduce the $(p,q;l)$-extended $τ$-Gauss hypergeometric and the $(p,q;l)$-extended $τ$-confluent hypergeometric functions with some of their properties, such as the Laplace-type and the Euler-type integral formulas. Another is to apply them to fractional kinetic equations that appear in astrophysics and physics using the Laplace transform method.
Beta function hypergeometric function fractional calculus pochhemmer symbol integral transforms
Birincil Dil | İngilizce |
---|---|
Konular | Matematik |
Bölüm | Araştırma Makalesi |
Yazarlar | |
Yayımlanma Tarihi | 31 Mart 2022 |
Gönderilme Tarihi | 19 Ocak 2022 |
Yayımlandığı Sayı | Yıl 2022 Sayı: 38 |
As of 2021, JNT is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC). |