Araştırma Makalesi
BibTex RIS Kaynak Göster

On the Characterisations of Curves with Modified Orthogonal Frame in $\mathbb{E}^{3}$

Yıl 2022, Sayı: 40, 54 - 59, 30.09.2022
https://doi.org/10.53570/jnt.1148933

Öz

This study analyses (k,m)-type slant helices in compliance with the modified orthogonal frame in 3-dimensional Euclidean space ($\mathbb{E}^{3}$). Furthermore, we perform some characterisations of curves with modified orthogonal frames in $\mathbb{E}^{3}$.

Kaynakça

  • M. Barros, General Helices and a Theorem of Lancret, Proceedings of the American Mathematical Society 125 (5) (1997), 1503–1509.
  • D. J. Struik, Lectures on Classical Differential Geometry, Addison Wesley, 1988.
  • S. Izumiya, N. Takeuchi, New Special Curves and Developable Surfaces, Turkish Journal of Mathematics 28 (2) (2004), 153–164.
  • T. Y. Shaker, Evolution of Space Curves Using Type-3 Bishop Frame, Caspian Journal of Mathematical Sciences (CJMS) 8 (1) (2019), 58–73.
  • M. Bektaş, M. Y. Yılmaz, (k,m)-Type Slant Helices for Partially Null and Pseudo-Null Curves in Minkowski Space, Applied Mathematics and Nonlinear Sciences 5(1) (2020) 515–520.
  • M. Y. Yilmaz, M. Bektaş, Slant Helices of (k, m)-Type in E^4, Acta Universitatis Sapientiae, Mathematica 10 (2) (2018) 395–401.
  • F. Bulut, M. Bektaş, Special Helices on Equiform Differential Geometry of Spacelike Curves in Minkowski Spacetime, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69 (2) (2020) 1045–1056.
  • B. Bükcü, M. K. Karacan, Spherical Curves with Modified Orthogonal Frame, Journal of New Results in Science 5 (10) (2016) 60–68.
  • K. Eren, H. H. Kosal, Evolution of Space Curves and the Special Ruled Surfaces with Modified Orthogonal Frame, American Institute of Mathematical Sciences-Aims.
  • A. Z. Azak, Involute-Evolute Curves according to Modified Orthogonal Frame, Journal of Science and Arts 21 (2) (2021) 385–394.
  • M. S. Lone, H. Es, M. K. Karacan, B. Bükcü, On Some Curves with Modified Orthogonal Frame in Euclidean 3-Space, Iranian Journal of Science and Technology, Transactions A: Science 43 (4) (2019) 1905–1916.
  • N. Ekmekci, On General Helices and Submanifolds of an Indefinite-Riemannian Manifold, Analele Stiintifice Universitati Ale I Cuza Lasi Matematica (NS) 46 (2001) 263–270.
  • T. Ahmad, A. R. Lopez, Slant Helices in Minkowski Space E_1^3, Journal of the Korean Mathematical Society 48 (1) (2011) 159–167.
  • S. Kumar, B. Pal, K-Type Slant Helices on Spacelike and Timelike Surfaces, Acta et Commentationes Universitatis Tartuensis de Mathematica 25 (2) (2021) 201–220.
Yıl 2022, Sayı: 40, 54 - 59, 30.09.2022
https://doi.org/10.53570/jnt.1148933

Öz

Kaynakça

  • M. Barros, General Helices and a Theorem of Lancret, Proceedings of the American Mathematical Society 125 (5) (1997), 1503–1509.
  • D. J. Struik, Lectures on Classical Differential Geometry, Addison Wesley, 1988.
  • S. Izumiya, N. Takeuchi, New Special Curves and Developable Surfaces, Turkish Journal of Mathematics 28 (2) (2004), 153–164.
  • T. Y. Shaker, Evolution of Space Curves Using Type-3 Bishop Frame, Caspian Journal of Mathematical Sciences (CJMS) 8 (1) (2019), 58–73.
  • M. Bektaş, M. Y. Yılmaz, (k,m)-Type Slant Helices for Partially Null and Pseudo-Null Curves in Minkowski Space, Applied Mathematics and Nonlinear Sciences 5(1) (2020) 515–520.
  • M. Y. Yilmaz, M. Bektaş, Slant Helices of (k, m)-Type in E^4, Acta Universitatis Sapientiae, Mathematica 10 (2) (2018) 395–401.
  • F. Bulut, M. Bektaş, Special Helices on Equiform Differential Geometry of Spacelike Curves in Minkowski Spacetime, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69 (2) (2020) 1045–1056.
  • B. Bükcü, M. K. Karacan, Spherical Curves with Modified Orthogonal Frame, Journal of New Results in Science 5 (10) (2016) 60–68.
  • K. Eren, H. H. Kosal, Evolution of Space Curves and the Special Ruled Surfaces with Modified Orthogonal Frame, American Institute of Mathematical Sciences-Aims.
  • A. Z. Azak, Involute-Evolute Curves according to Modified Orthogonal Frame, Journal of Science and Arts 21 (2) (2021) 385–394.
  • M. S. Lone, H. Es, M. K. Karacan, B. Bükcü, On Some Curves with Modified Orthogonal Frame in Euclidean 3-Space, Iranian Journal of Science and Technology, Transactions A: Science 43 (4) (2019) 1905–1916.
  • N. Ekmekci, On General Helices and Submanifolds of an Indefinite-Riemannian Manifold, Analele Stiintifice Universitati Ale I Cuza Lasi Matematica (NS) 46 (2001) 263–270.
  • T. Ahmad, A. R. Lopez, Slant Helices in Minkowski Space E_1^3, Journal of the Korean Mathematical Society 48 (1) (2011) 159–167.
  • S. Kumar, B. Pal, K-Type Slant Helices on Spacelike and Timelike Surfaces, Acta et Commentationes Universitatis Tartuensis de Mathematica 25 (2) (2021) 201–220.
Toplam 14 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Araştırma Makalesi
Yazarlar

Şeyda Özel 0000-0002-1519-2418

Mehmet Bektaş Bu kişi benim 0000-0002-5797-4944

Yayımlanma Tarihi 30 Eylül 2022
Gönderilme Tarihi 26 Temmuz 2022
Yayımlandığı Sayı Yıl 2022 Sayı: 40

Kaynak Göster

APA Özel, Ş., & Bektaş, M. (2022). On the Characterisations of Curves with Modified Orthogonal Frame in $\mathbb{E}^{3}$. Journal of New Theory(40), 54-59. https://doi.org/10.53570/jnt.1148933
AMA Özel Ş, Bektaş M. On the Characterisations of Curves with Modified Orthogonal Frame in $\mathbb{E}^{3}$. JNT. Eylül 2022;(40):54-59. doi:10.53570/jnt.1148933
Chicago Özel, Şeyda, ve Mehmet Bektaş. “On the Characterisations of Curves With Modified Orthogonal Frame in $\mathbb{E}^{3}$”. Journal of New Theory, sy. 40 (Eylül 2022): 54-59. https://doi.org/10.53570/jnt.1148933.
EndNote Özel Ş, Bektaş M (01 Eylül 2022) On the Characterisations of Curves with Modified Orthogonal Frame in $\mathbb{E}^{3}$. Journal of New Theory 40 54–59.
IEEE Ş. Özel ve M. Bektaş, “On the Characterisations of Curves with Modified Orthogonal Frame in $\mathbb{E}^{3}$”, JNT, sy. 40, ss. 54–59, Eylül 2022, doi: 10.53570/jnt.1148933.
ISNAD Özel, Şeyda - Bektaş, Mehmet. “On the Characterisations of Curves With Modified Orthogonal Frame in $\mathbb{E}^{3}$”. Journal of New Theory 40 (Eylül 2022), 54-59. https://doi.org/10.53570/jnt.1148933.
JAMA Özel Ş, Bektaş M. On the Characterisations of Curves with Modified Orthogonal Frame in $\mathbb{E}^{3}$. JNT. 2022;:54–59.
MLA Özel, Şeyda ve Mehmet Bektaş. “On the Characterisations of Curves With Modified Orthogonal Frame in $\mathbb{E}^{3}$”. Journal of New Theory, sy. 40, 2022, ss. 54-59, doi:10.53570/jnt.1148933.
Vancouver Özel Ş, Bektaş M. On the Characterisations of Curves with Modified Orthogonal Frame in $\mathbb{E}^{3}$. JNT. 2022(40):54-9.


TR Dizin 26024

Electronic Journals Library (EZB) 13651



Academindex 28993

SOBİAD 30256                                                   

Scilit 20865                                                  


29324 As of 2021, JNT is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).