In this paper, we first establish the regular matrix $N$ using Narayana numbers. Then, we create new normed sequence spaces $Z(N)$ using the matrix $ N$ and demonstrate that these spaces are linearly isomorphic to $Z$ where $Z\in\{c_0, c, \ell_p, \ell_\infty\}$. Additionally, we provide inclusion relations for the spaces $c_0(N)$, $c(N)$, $\ell_p(N)$, and $\ell_\infty(N)$. Furthermore, we construct the Schauder bases of the $c_0(N)$, $c(N)$, and $\ell_p(N)$. Finally, we compute the $\alpha$-, $\beta$-, and $\gamma$-duals of these spaces and characterize the classes $(Z(N),X)$ for the certain choice of the sequence space $X$.
Narayana numbers Narayana matrices sequence spaces matrix transformations
Birincil Dil | İngilizce |
---|---|
Konular | Operatör Cebirleri ve Fonksiyonel Analiz |
Bölüm | Araştırma Makalesi |
Yazarlar | |
Erken Görünüm Tarihi | 28 Mart 2024 |
Yayımlanma Tarihi | 29 Mart 2024 |
Gönderilme Tarihi | 20 Aralık 2023 |
Kabul Tarihi | 29 Şubat 2024 |
Yayımlandığı Sayı | Yıl 2024 Sayı: 46 |
As of 2021, JNT is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC). |