Derleme
BibTex RIS Kaynak Göster

Mikroakışkanların Biyomedikal Alanında Kullanımı

Yıl 2024, Cilt: 4 Sayı: 2, 56 - 64, 30.05.2024

Öz

Mikroakışkanlar, sıvılar veya gazlar gibi akışkan maddelerin mikroskobik ölçekteki hareketi ve etkileşimleri üzerine odaklanır. Genel olarak 1-500 mikrometre arasında mikro ölçekli yapısına sahip olan bu cihazlar ve sistemler, sıvıları kontrol etmeyi ve işlemeyi sağlar. Mikroakışkan teknolojisi patojenler, biyobelirteçler, pestisit kalıntıları, gazlar ve havadan yayılan mikroorganizmalar gibi çeşitli maddeleri tespit etmek için güçlü bir araç olarak ortaya çıkmıştır. Mikroakışkan cihazların tespiti, analit konsantrasyonlarını mikrometre düzeyinde ölçerek veya bir analitin basit varlığını veya yokluğunu belirleyerek anahtar bir özelliktir.
Mikroakışkan sistemlerde, çeşitli analitlerin tespiti, elektrokimyasal, optik, manyetik ve termal yöntemler gibi farklı fiziksel prensipleri kullanan çeşitli birleştirilmiş modüller aracılığıyla gerçekleştirilebilir. Bu entegrasyon modüllerinin çok yönlülüğü, araştırmacılara biyomedikal, klinik, çevresel izleme ve gıda güvenliği alanlarında çeşitli uygulama gereksinimlerine uygun tespit stratejileri geliştirmelerini sağlar. Mikroakışkan sistemlerin faydaları, enfeksiyon hastalıklarının tanımlanması için hızlı tespit, kullanım kolaylığı, maliyet etkinliği ve yüksek doğruluk içerir.
Bu incelemede, mikroakışkan sistemlerdeki tespit yöntemlerinin kullanımı ve biyomedikal, klinik, çevresel izleme, gıda güvenliği ve bakım noktası tanıları gibi çeşitli alanlardaki uygulamaları kapsamlı bir şekilde incelenmektedir.

Kaynakça

  • [1] Zimmerman WBJ, editor. Microfluidics: history, theory and applications. New York: Springer Science & Business Media; 2006.
  • [2] Nasseri B, et al. Point-of-care microfluidic devices for pathogen detection. Biosens Bioelectron. 2018;117:112-128.
  • [3] Wang X, et al. Synthesis of biomaterials utilizing microfluidic technology. Genes. 2018;9(6):283.
  • [4] Jin J, Nguyen NT. Manipulation schemes and applications of liquid marbles for micro total analysis systems. Microelectron Eng. 2018;197:87-95.
  • [5] Soum V, et al. Programmable paper-based microfluidic devices for biomarker detections. Micromachines (Basel). 2019;10(8):516.
  • [6] Li M, et al. Nanostructured sensors for detection of heavy metals: a review. 2013.
  • [7] Kimura H, et al. An integrated microfluidic system for long-term perfusion culture and on-line monitoring of intestinal tissue models. Lab Chip. 2008;8(5):741-746.
  • [8] Erkal JL, et al. 3D printed microfluidic devices with integrated versatile and reusable electrodes. Lab Chip. 2014;14(12):2023-2032.
  • [9] Gong X, et al. Label-free in-flow detection of single DNA molecules using glass nanopipettes. Anal Chem. 2014;86(1):835-841.
  • [10] Chabinyc ML, et al. An integrated fluorescence detection system in poly(dimethylsiloxane) for microfluidic applications. Anal Chem. 2001;73(18):4491-4498.
  • [11] Murali S, et al. A microfluidic Coulter counting device for metal wear detection in lubrication oil. Rev Sci Instrum. 2009;80(1).
  • [12] Brazey B, et al. Impedance-based real-time position sensor for lab-on-a-chip devices. Lab Chip. 2018;18(5):818-831.
  • [13] Gencoglu A, Minerick AR. Electrochemical detection techniques in micro-and nanofluidic devices. Microfluid Nanofluid. 2014;17:781-807.
  • [14] Ruecha N, Siangproh W, Chailapakul O. A fast and highly sensitive detection of cholesterol using polymer microfluidic devices and amperometric system. Talanta. 2011;84(5):1323-1328.
  • [15] Jiang D, et al. Development of a cyclic voltammetry method for DNA electrochemical detection on microfluidic gene chip. Int J Electrochem Sci. 2012;7(11):10607-10619.
  • [16] Giménez-Gómez P, et al. Automated determination of As (III) in waters with an electrochemical sensor integrated into a modular microfluidic system. ACS Sens. 2019;4(12):3156-3165.
  • [17] Rackus DG, Shamsi MH, Wheeler AR. Electrochemistry, biosensors and microfluidics: a convergence of fields. Chem Soc Rev. 2015;44(15):5320-5340.
  • [18] Ali MA, et al. Microfluidic immuno-biochip for detection of breast cancer biomarkers using hierarchical composite of porous graphene and titanium dioxide nanofibers. ACS Appl Mater Interfaces. 2016;8(32):20570-20582.
  • [19] Lindsay S, et al. Discrete microfluidics with electrochemical detection. Analyst. 2007;132(5):412-416. [20] Li M, et al. Nanostructured sensors for detection of heavy metals: a review. 2013.
  • [21] Hong Y, et al. 3D printed microfluidic device with microporous Mn2O3-modified screen printed electrode for real-time determination of heavy metal ions. ACS Appl Mater Interfaces. 2016;8(48):32940-32947.
  • [22] Ming T, et al. Electrochemical microfluidic paper-based aptasensor platform based on a biotin-streptavidin system for label-free detection of biomarkers. ACS Appl Mater Interfaces. 2021;13(39):46317-46324.
  • [23] Gai H, Li Y, Yeung ES. Optical detection systems on microfluidic chips. Microfluidics: Technologies and Applications. 2011;171-201.
  • [24] Pires NM, et al. Recent developments in optical detection technologies in lab-on-a-chip devices for biosensing applications. Sensors (Basel). 2014;14(8):15458-15479.
  • [25] Wang J, et al. Surface-enhanced Raman scattering integrated with microfluidic device fabricated using atomic force microscopy tip-based nanomachining approach. Proc Inst Mech Eng B J Eng Manuf. 2023;237(10):1526-1537.
  • [26] Wang X, et al. Integrated thin-film polymer/fullerene photodetectors for on-chip microfluidic chemiluminescence detection. Lab Chip. 2007;7(1):58-63.
  • [27] Khosla K, et al. Yield enhancement in whispering gallery mode biosensors: microfluidics and optical forces. J Mod Opt. 2014;61(5):415-418.
  • [28] Parker HE, et al. A Lab-in-a-Fiber optofluidic device using droplet microfluidics and laser-induced fluorescence for virus detection. Sci Rep. 2022;12(1):3539.
  • [29] Liu F, KC P, Zhang G, Zhe J. Microfluidic magnetic bead assay for cell detection. Anal Chem. 2016;88(1):711-717.
  • [30] Liu M, Franko M. Influences of detection pinhole and sample flow on thermal lens detection in microfluidic systems. Int J Thermophys. 2014;35:2178-2186.
  • [31] Li Z, et al. Instrument-free, CRISPR-based diagnostics of SARS-CoV-2 using self-contained microfluidic system. Biosens Bioelectron. 2022;199:113865.
  • [32] Chen J, Li J, Sun Y. Microfluidic approaches for cancer cell detection, characterization, and separation. Lab Chip. 2012;12(10):1753-1767.
  • [33] Abedini-Nassab R, Pouryosef Miandoab M, Şaşmaz M. Microfluidic synthesis, control, and sensing of magnetic nanoparticles: A review. Micromachines (Basel). 2021;12(7):768.
  • [34] Chandrasekaran A, Packirisamy M. Integrated microfluidic biophotonic chip for laser induced fluorescence detection. Biomed Microdevices. 2010;12:923-933.
  • [35] Fiore L, et al. Microfluidic paper-based wearable electrochemical biosensor for reliable cortisol detection in sweat. Sens Actuators B Chem. 2023;379:133258.
  • [36] Nguyen NT, et al. Recent advances and future perspectives on microfluidic liquid handling. Micromachines (Basel). 2017;8(6):186.
  • [37] Nwankire CE, et al. Label-free impedance detection of cancer cells from whole blood on an integrated centrifugal microfluidic platform. Biosens Bioelectron. 2015;68:382-389.
  • [38] Jin S, et al. A novel impedimetric microfluidic analysis system for transgenic protein Cry1Ab detection. Sci Rep. 2017;7(1):43175.
  • [39] Lee T, et al. Highly sensitive and reliable microRNA detection with a recyclable microfluidic device and an easily assembled SERS substrate. ACS Omega. 2021;6(30):19656-19664.
  • [40] Yao P, et al. Telemedicine utilizing integrated microfluidic system for insulin detection. In: 2013 IEEE International Conference on Cyber Technology in Automation, Control and Intelligent Systems. IEEE; 2013. p. 149-152.
  • [41] He JL, Wang DS, Fan SK. Opto-microfluidic immunosensors: from colorimetric to plasmonic. Micromachines (Basel). 2016;7(2):29.
  • [42] Chen F, et al. Multiplex detection of infectious diseases on microfluidic platforms. Biosensors (Basel). 2023;13(3):410.
  • [43] Yew M, et al. A review of state-of-the-art microfluidic technologies for environmental applications: Detection and remediation. Global Challenges. 2019;3(1):1800060.
  • [44] Fu LM, et al. Sample preconcentration from dilute solutions on micro/nanofluidic platforms: A review. Electrophoresis. 2018;39(2):289-310.
  • [45] Milani A, et al. Development and application of a microfluidic in-situ analyzer for dissolved Fe and Mn in natural waters. Talanta. 2015;136:15-22.
  • [46] Gao H, et al. Application of microfluidic chip technology in food safety sensing. Sensors (Basel). 2020;20(6):1792.
  • [47] Li P, Wang Y, Xu B. Research on micro-quantitative detection technology of simulated waterbody COD based on the ozone chemiluminescence method. Water (Basel). 2022;14(3):328.
  • [48] Kaaliveetil S, et al. Microfluidic gas sensors: detection principle and applications. Micromachines (Basel). 2022;13(10):1716.
  • [49] Li S, et al. Microfluidic paper-based chip for parathion-methyl detection based on a double catalytic amplification strategy. Microchim Acta. 2021;188:1-8.
  • [50] Qin P, et al. Rapid and fully microfluidic Ebola virus detection with CRISPR-Cas13a. ACS Sens. 2019;4(4):1048-1054.
  • [51] Ye X, et al. Microfluidic-CFPA chip for the point-of-care detection of African swine fever virus with a median time to threshold in about 10 min. ACS Sens. 2019;4(11):3066-3071.
  • [52] Fang X, et al. Loop-mediated isothermal amplification integrated on microfluidic chips for point-of-care quantitative detection of pathogens. Anal Chem. 2010;82(7):3002-3006.
  • [53] Salafi T, et al. Portable smartphone-based platform for real-time particle detection in microfluidics. Adv Mater Technol. 2019;4(3):1800359.
  • [54] Jun Kang Y, Yeom E, Lee SJ. A microfluidic device for simultaneous measurement of viscosity and flow rate of blood in a complex fluidic network. Biomicrofluidics. 2013;7(5).

Microfluidic Technology for Detection

Yıl 2024, Cilt: 4 Sayı: 2, 56 - 64, 30.05.2024

Öz

Microfluidics focuses on the movement and interactions of fluidic substances, such as liquids or gases, on a microscopic scale. In general, it provides controls and handles fluids by utilizing devices and systems that possess microscale structures within 1-500 micrometers. Microfluidic technology has emerged as a powerful tool for detecting various substances, including pathogens, biomarkers, pesticide residues, gases, and airborne microorganisms. Detection is a key aspect of microfluidic devices by quantifying analyte concentrations on the order of micrometers or determining the mere absence or presence of an analyte.
In microfluidic systems, the detection of various analytes can be achieved through various integrated modules that utilize different physical principles, including electrochemical, optical, magnetic, and thermal methods. The versatility of these integration modules enables researchers to develop their detection strategies to suit diverse application requirements in biomedical, clinical, environmental monitoring, and food safety fields. The benefits of microfluidic systems include rapid detection, ease of use, cost-effectiveness, and high accuracy for the identification of infectious diseases.
In this review, the utilization of detection methods within microfluidic systems and their applications across various domains, including biomedical, clinical, environmental monitoring, food safety, and point-of-care diagnostics, are being extensively explored.

Kaynakça

  • [1] Zimmerman WBJ, editor. Microfluidics: history, theory and applications. New York: Springer Science & Business Media; 2006.
  • [2] Nasseri B, et al. Point-of-care microfluidic devices for pathogen detection. Biosens Bioelectron. 2018;117:112-128.
  • [3] Wang X, et al. Synthesis of biomaterials utilizing microfluidic technology. Genes. 2018;9(6):283.
  • [4] Jin J, Nguyen NT. Manipulation schemes and applications of liquid marbles for micro total analysis systems. Microelectron Eng. 2018;197:87-95.
  • [5] Soum V, et al. Programmable paper-based microfluidic devices for biomarker detections. Micromachines (Basel). 2019;10(8):516.
  • [6] Li M, et al. Nanostructured sensors for detection of heavy metals: a review. 2013.
  • [7] Kimura H, et al. An integrated microfluidic system for long-term perfusion culture and on-line monitoring of intestinal tissue models. Lab Chip. 2008;8(5):741-746.
  • [8] Erkal JL, et al. 3D printed microfluidic devices with integrated versatile and reusable electrodes. Lab Chip. 2014;14(12):2023-2032.
  • [9] Gong X, et al. Label-free in-flow detection of single DNA molecules using glass nanopipettes. Anal Chem. 2014;86(1):835-841.
  • [10] Chabinyc ML, et al. An integrated fluorescence detection system in poly(dimethylsiloxane) for microfluidic applications. Anal Chem. 2001;73(18):4491-4498.
  • [11] Murali S, et al. A microfluidic Coulter counting device for metal wear detection in lubrication oil. Rev Sci Instrum. 2009;80(1).
  • [12] Brazey B, et al. Impedance-based real-time position sensor for lab-on-a-chip devices. Lab Chip. 2018;18(5):818-831.
  • [13] Gencoglu A, Minerick AR. Electrochemical detection techniques in micro-and nanofluidic devices. Microfluid Nanofluid. 2014;17:781-807.
  • [14] Ruecha N, Siangproh W, Chailapakul O. A fast and highly sensitive detection of cholesterol using polymer microfluidic devices and amperometric system. Talanta. 2011;84(5):1323-1328.
  • [15] Jiang D, et al. Development of a cyclic voltammetry method for DNA electrochemical detection on microfluidic gene chip. Int J Electrochem Sci. 2012;7(11):10607-10619.
  • [16] Giménez-Gómez P, et al. Automated determination of As (III) in waters with an electrochemical sensor integrated into a modular microfluidic system. ACS Sens. 2019;4(12):3156-3165.
  • [17] Rackus DG, Shamsi MH, Wheeler AR. Electrochemistry, biosensors and microfluidics: a convergence of fields. Chem Soc Rev. 2015;44(15):5320-5340.
  • [18] Ali MA, et al. Microfluidic immuno-biochip for detection of breast cancer biomarkers using hierarchical composite of porous graphene and titanium dioxide nanofibers. ACS Appl Mater Interfaces. 2016;8(32):20570-20582.
  • [19] Lindsay S, et al. Discrete microfluidics with electrochemical detection. Analyst. 2007;132(5):412-416. [20] Li M, et al. Nanostructured sensors for detection of heavy metals: a review. 2013.
  • [21] Hong Y, et al. 3D printed microfluidic device with microporous Mn2O3-modified screen printed electrode for real-time determination of heavy metal ions. ACS Appl Mater Interfaces. 2016;8(48):32940-32947.
  • [22] Ming T, et al. Electrochemical microfluidic paper-based aptasensor platform based on a biotin-streptavidin system for label-free detection of biomarkers. ACS Appl Mater Interfaces. 2021;13(39):46317-46324.
  • [23] Gai H, Li Y, Yeung ES. Optical detection systems on microfluidic chips. Microfluidics: Technologies and Applications. 2011;171-201.
  • [24] Pires NM, et al. Recent developments in optical detection technologies in lab-on-a-chip devices for biosensing applications. Sensors (Basel). 2014;14(8):15458-15479.
  • [25] Wang J, et al. Surface-enhanced Raman scattering integrated with microfluidic device fabricated using atomic force microscopy tip-based nanomachining approach. Proc Inst Mech Eng B J Eng Manuf. 2023;237(10):1526-1537.
  • [26] Wang X, et al. Integrated thin-film polymer/fullerene photodetectors for on-chip microfluidic chemiluminescence detection. Lab Chip. 2007;7(1):58-63.
  • [27] Khosla K, et al. Yield enhancement in whispering gallery mode biosensors: microfluidics and optical forces. J Mod Opt. 2014;61(5):415-418.
  • [28] Parker HE, et al. A Lab-in-a-Fiber optofluidic device using droplet microfluidics and laser-induced fluorescence for virus detection. Sci Rep. 2022;12(1):3539.
  • [29] Liu F, KC P, Zhang G, Zhe J. Microfluidic magnetic bead assay for cell detection. Anal Chem. 2016;88(1):711-717.
  • [30] Liu M, Franko M. Influences of detection pinhole and sample flow on thermal lens detection in microfluidic systems. Int J Thermophys. 2014;35:2178-2186.
  • [31] Li Z, et al. Instrument-free, CRISPR-based diagnostics of SARS-CoV-2 using self-contained microfluidic system. Biosens Bioelectron. 2022;199:113865.
  • [32] Chen J, Li J, Sun Y. Microfluidic approaches for cancer cell detection, characterization, and separation. Lab Chip. 2012;12(10):1753-1767.
  • [33] Abedini-Nassab R, Pouryosef Miandoab M, Şaşmaz M. Microfluidic synthesis, control, and sensing of magnetic nanoparticles: A review. Micromachines (Basel). 2021;12(7):768.
  • [34] Chandrasekaran A, Packirisamy M. Integrated microfluidic biophotonic chip for laser induced fluorescence detection. Biomed Microdevices. 2010;12:923-933.
  • [35] Fiore L, et al. Microfluidic paper-based wearable electrochemical biosensor for reliable cortisol detection in sweat. Sens Actuators B Chem. 2023;379:133258.
  • [36] Nguyen NT, et al. Recent advances and future perspectives on microfluidic liquid handling. Micromachines (Basel). 2017;8(6):186.
  • [37] Nwankire CE, et al. Label-free impedance detection of cancer cells from whole blood on an integrated centrifugal microfluidic platform. Biosens Bioelectron. 2015;68:382-389.
  • [38] Jin S, et al. A novel impedimetric microfluidic analysis system for transgenic protein Cry1Ab detection. Sci Rep. 2017;7(1):43175.
  • [39] Lee T, et al. Highly sensitive and reliable microRNA detection with a recyclable microfluidic device and an easily assembled SERS substrate. ACS Omega. 2021;6(30):19656-19664.
  • [40] Yao P, et al. Telemedicine utilizing integrated microfluidic system for insulin detection. In: 2013 IEEE International Conference on Cyber Technology in Automation, Control and Intelligent Systems. IEEE; 2013. p. 149-152.
  • [41] He JL, Wang DS, Fan SK. Opto-microfluidic immunosensors: from colorimetric to plasmonic. Micromachines (Basel). 2016;7(2):29.
  • [42] Chen F, et al. Multiplex detection of infectious diseases on microfluidic platforms. Biosensors (Basel). 2023;13(3):410.
  • [43] Yew M, et al. A review of state-of-the-art microfluidic technologies for environmental applications: Detection and remediation. Global Challenges. 2019;3(1):1800060.
  • [44] Fu LM, et al. Sample preconcentration from dilute solutions on micro/nanofluidic platforms: A review. Electrophoresis. 2018;39(2):289-310.
  • [45] Milani A, et al. Development and application of a microfluidic in-situ analyzer for dissolved Fe and Mn in natural waters. Talanta. 2015;136:15-22.
  • [46] Gao H, et al. Application of microfluidic chip technology in food safety sensing. Sensors (Basel). 2020;20(6):1792.
  • [47] Li P, Wang Y, Xu B. Research on micro-quantitative detection technology of simulated waterbody COD based on the ozone chemiluminescence method. Water (Basel). 2022;14(3):328.
  • [48] Kaaliveetil S, et al. Microfluidic gas sensors: detection principle and applications. Micromachines (Basel). 2022;13(10):1716.
  • [49] Li S, et al. Microfluidic paper-based chip for parathion-methyl detection based on a double catalytic amplification strategy. Microchim Acta. 2021;188:1-8.
  • [50] Qin P, et al. Rapid and fully microfluidic Ebola virus detection with CRISPR-Cas13a. ACS Sens. 2019;4(4):1048-1054.
  • [51] Ye X, et al. Microfluidic-CFPA chip for the point-of-care detection of African swine fever virus with a median time to threshold in about 10 min. ACS Sens. 2019;4(11):3066-3071.
  • [52] Fang X, et al. Loop-mediated isothermal amplification integrated on microfluidic chips for point-of-care quantitative detection of pathogens. Anal Chem. 2010;82(7):3002-3006.
  • [53] Salafi T, et al. Portable smartphone-based platform for real-time particle detection in microfluidics. Adv Mater Technol. 2019;4(3):1800359.
  • [54] Jun Kang Y, Yeom E, Lee SJ. A microfluidic device for simultaneous measurement of viscosity and flow rate of blood in a complex fluidic network. Biomicrofluidics. 2013;7(5).
Toplam 53 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Halk Sağlığı (Diğer)
Bölüm Derlemeler
Yazarlar

Buse Ay 0009-0005-1003-0961

Ahmet Koluman 0000-0001-5308-8884

Yayımlanma Tarihi 30 Mayıs 2024
Gönderilme Tarihi 17 Mart 2024
Kabul Tarihi 19 Mayıs 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 4 Sayı: 2

Kaynak Göster

APA Ay, B., & Koluman, A. (2024). Microfluidic Technology for Detection. Journal of Health Sciences and Management, 4(2), 56-64.