Araştırma Makalesi
BibTex RIS Kaynak Göster

Bobillier Teoreminin Kinematik Yaklaşımlarla Kapsamlı Bir Analizi

Yıl 2024, , 149 - 155, 20.12.2024
https://doi.org/10.58769/joinssr.1586211

Öz

Bu makale, Bobillier Teoremi'nin uygulamalarına özel bir vurgu yaparak, kinematik yaklaşımlar perspektifinden eğrilik teorisinin kapsamlı bir incelemesini sunmaktadır. Eğrilik teorisi, diferansiyel geometri içinde önemli bir rol oynar ve hem statik hem de dinamik ortamlarda nesne yörüngeleri, normal eğrilik ve eğrilik merkez yörüngelerinin incelenmesi için temeldir. Bu çalışma, klasik geometrik analizi dinamik uygulamalarla bağlamak için Bobillier Teoremi'ni vurgulayarak, eğrilik teorisine kinematik bir yaklaşım benimsemektedir.

Kaynakça

  • [1] G. Dittrich, R. Braune, Getriebetechnik in Beispielen, R. Oldenbourg Verlag, München, 1978.
  • [2] E.A. Dijksman, Motion Geometry of Mechanisms, Cambridge University Press, 1976.
  • [3] L. Hagedorn, Konstruktive Getriebelehre. 3. Aufl., Hermann Schroedel Verlag KG, Hannover, 1976.
  • [4] F. Hohenberg, Konstruktive Geometrie in der Technik, 3. Aufl., Springer Verlag, Wien, 1966.
  • [5] H. Kerle, B. Corves, R. Pittschellis, Einführung in die Getriebelehre: Analyse und Synthese ungleichmaeßig übersetzender Getriebe, 3. Aufl., B.G. Teubner Verlag, Wiesbaden, 2007.
  • [6] F.L. Litvin, A. Fuentes, Gear Geometry and Applied Theory, 2nd ed., Cambridge University Press, 2004.
  • [7] K. Luck, K.-H. Modler, Getriebetechnik, Springer Verlag Wien, New York, 1990.
  • [8] F. Reuleaux, Lehrbuch der Kinematik, I. Theoretische Kinematik, Friedrich Vieweg und Sohn, Braunschweig, 1875.
  • [9] J.E. Shigley, J.J. Uicker, Theory of Machines and Mechanisms, McGraw-Hill, New York, 1980.
  • [10] W. Steinhilper, H. Hennerici, S. Britz, Kinematische Grundlagen ebener Mechanismen und Getriebe, Vogel Buchverlag, Würzburg, 1993.
  • [11] W. Wunderlich, Ebene Kinematik, BI–Hochschultaschenbücher, Band 447, Bibliographisches Institut, Mannheim, 1970.
  • [12] T. Arens, F. Hettlich, Ch. Karpfinger, U. Kockelkorn, K., Lichtenegger, H. Stachel, Mathematik, 2. Aufl., Spektrum Akademischer Verlag, Heidelberg, 2011.
  • [13] M. P. do Carmo, Differential Geometry of Curves and Surfaces, Prentice-Hall, 1976.
  • [14] D. J. Struik, Lectures on Classical Differential Geometry, Addison-Wesley, 1961.
  • [15] M. Spivak, A Comprehensive Introduction to Differential Geometry, Vol. 2, 3rd. Edition, Publish or Perish, 1999.
  • [16] A. Gray, Modern Differential Geometry of Curves and Surfaces with Mathematica, CRC Press, 1998

A Comprehensive Analysis through Kinematic Approaches of Bobillier’s Theorem

Yıl 2024, , 149 - 155, 20.12.2024
https://doi.org/10.58769/joinssr.1586211

Öz

This paper presents a comprehensive examination of curvature theory through the lens of kinematic approaches, with a particular focus on the applications of Bobillier’s Theorem. Curvature theory plays a central role in differential geometry and is fundamental to the study of object trajectories, normal curvature, and center of curvature paths in both static and dynamic settings. This study employs a kinematic approach to curvature theory, emphasizing Bobillier’s Theorem to connect classical geometric analysis with dynamic applications.

Kaynakça

  • [1] G. Dittrich, R. Braune, Getriebetechnik in Beispielen, R. Oldenbourg Verlag, München, 1978.
  • [2] E.A. Dijksman, Motion Geometry of Mechanisms, Cambridge University Press, 1976.
  • [3] L. Hagedorn, Konstruktive Getriebelehre. 3. Aufl., Hermann Schroedel Verlag KG, Hannover, 1976.
  • [4] F. Hohenberg, Konstruktive Geometrie in der Technik, 3. Aufl., Springer Verlag, Wien, 1966.
  • [5] H. Kerle, B. Corves, R. Pittschellis, Einführung in die Getriebelehre: Analyse und Synthese ungleichmaeßig übersetzender Getriebe, 3. Aufl., B.G. Teubner Verlag, Wiesbaden, 2007.
  • [6] F.L. Litvin, A. Fuentes, Gear Geometry and Applied Theory, 2nd ed., Cambridge University Press, 2004.
  • [7] K. Luck, K.-H. Modler, Getriebetechnik, Springer Verlag Wien, New York, 1990.
  • [8] F. Reuleaux, Lehrbuch der Kinematik, I. Theoretische Kinematik, Friedrich Vieweg und Sohn, Braunschweig, 1875.
  • [9] J.E. Shigley, J.J. Uicker, Theory of Machines and Mechanisms, McGraw-Hill, New York, 1980.
  • [10] W. Steinhilper, H. Hennerici, S. Britz, Kinematische Grundlagen ebener Mechanismen und Getriebe, Vogel Buchverlag, Würzburg, 1993.
  • [11] W. Wunderlich, Ebene Kinematik, BI–Hochschultaschenbücher, Band 447, Bibliographisches Institut, Mannheim, 1970.
  • [12] T. Arens, F. Hettlich, Ch. Karpfinger, U. Kockelkorn, K., Lichtenegger, H. Stachel, Mathematik, 2. Aufl., Spektrum Akademischer Verlag, Heidelberg, 2011.
  • [13] M. P. do Carmo, Differential Geometry of Curves and Surfaces, Prentice-Hall, 1976.
  • [14] D. J. Struik, Lectures on Classical Differential Geometry, Addison-Wesley, 1961.
  • [15] M. Spivak, A Comprehensive Introduction to Differential Geometry, Vol. 2, 3rd. Edition, Publish or Perish, 1999.
  • [16] A. Gray, Modern Differential Geometry of Curves and Surfaces with Mathematica, CRC Press, 1998
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Öğrenme (Diğer)
Bölüm Araştırma Makaleleri
Yazarlar

Engin Can 0000-0002-4105-6460

Yayımlanma Tarihi 20 Aralık 2024
Gönderilme Tarihi 15 Kasım 2024
Kabul Tarihi 10 Aralık 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Can, E. (2024). A Comprehensive Analysis through Kinematic Approaches of Bobillier’s Theorem. Journal of Smart Systems Research, 5(2), 149-155. https://doi.org/10.58769/joinssr.1586211
AMA Can E. A Comprehensive Analysis through Kinematic Approaches of Bobillier’s Theorem. JoinSSR. Aralık 2024;5(2):149-155. doi:10.58769/joinssr.1586211
Chicago Can, Engin. “A Comprehensive Analysis through Kinematic Approaches of Bobillier’s Theorem”. Journal of Smart Systems Research 5, sy. 2 (Aralık 2024): 149-55. https://doi.org/10.58769/joinssr.1586211.
EndNote Can E (01 Aralık 2024) A Comprehensive Analysis through Kinematic Approaches of Bobillier’s Theorem. Journal of Smart Systems Research 5 2 149–155.
IEEE E. Can, “A Comprehensive Analysis through Kinematic Approaches of Bobillier’s Theorem”, JoinSSR, c. 5, sy. 2, ss. 149–155, 2024, doi: 10.58769/joinssr.1586211.
ISNAD Can, Engin. “A Comprehensive Analysis through Kinematic Approaches of Bobillier’s Theorem”. Journal of Smart Systems Research 5/2 (Aralık 2024), 149-155. https://doi.org/10.58769/joinssr.1586211.
JAMA Can E. A Comprehensive Analysis through Kinematic Approaches of Bobillier’s Theorem. JoinSSR. 2024;5:149–155.
MLA Can, Engin. “A Comprehensive Analysis through Kinematic Approaches of Bobillier’s Theorem”. Journal of Smart Systems Research, c. 5, sy. 2, 2024, ss. 149-55, doi:10.58769/joinssr.1586211.
Vancouver Can E. A Comprehensive Analysis through Kinematic Approaches of Bobillier’s Theorem. JoinSSR. 2024;5(2):149-55.