Production of Aluminide Based Coating on Ti6Al4V Alloy by Pack Cementation Method
Yıl 2022,
Cilt: 3 Sayı: 2, 49 - 60, 26.12.2022
Ferhat Yılmaz
,
Gözde Çelebi Efe
,
Tuba Yener
Öz
In this study, it is aimed to produce aluminum coating by pack cementation method of Ti-6Al-4V alloy, which is one of the α+β titanium alloys frequently used in aerospace and biomedical fields. The characteristic properties of this coating were investigated by scanning electron microscopy (SEM), energy dispersive spectrometry (EDS) and X-ray diffraction analyses (XRD). Al powder is used for aluminum source, Al2O3 powder as the filler material and NH4Cl powder used as the activator. Aluminization process was carried out in an open atmosphere furnace at 700°C for 4,6 and 8 hours. In the X-ray diffraction (XRD) analyzes, TiAl, TiAl2 and TiAl3 and Al2O3phases were detected on the coating layer. It has been observed that the coating layer thickness varies between 12-20 µm depending on the holding times. The thickness of the formed titanium aluminide layer was measured with the Vickers hardness method and the hardness values were between 578-650 Hv. A homogeneous and continuous aluminum-rich coating layer on the surface was reached at 700°C temperature and 6 hours holding time.
Kaynakça
- [1] W. Yang et al., “Evaluation of growth kinetics of aluminide coating layers on Ti-6Al-4V alloys by pack cementation and the oxidation behaviours of the coated Ti-6Al-4V alloys,” Int. J. Refract. Met. Hard Mater., vol. 101, p. 105642, Dec. 2021, doi: 10.1016/J.IJRMHM.2021.105642.
- [2] T. Yener, “Chromium-Aluminide Coatings via Pack Cementation Method on Inconel 718 Alloy and Fe-Cr-Ni SuperAlloy,” Sak. Univ. J. Sci., vol. 23, no. 5, pp. 817–823, Oct. 2019, doi: 10.16984/saufenbilder.495407.
- [3] T. Yener, “Low temperature aluminising of Fe-Cr-Ni super alloy by pack cementation,” Vacuum, vol. 162, no. September 2018, pp. 114–120, 2019, doi: 10.1016/j.vacuum.2019.01.040.
- [4] F. J. Pérez, M. P. Hierro, F. Pedraza, M. C. Carpintero, C. Gómez, and R. Tarín, “Effect of fluidized bed CVD aluminide coatings on the cyclic oxidation of austenitic AISI 304 stainless steel,” Surf. Coatings Technol., vol. 145, no. 1–3, pp. 1–7, Aug. 2001, doi: 10.1016/S0257-8972(01)01019-2.
- [5] K. M. Döleker et al., “Enhancing the wear and oxidation behaviors of the Inconel 718 by low temperature aluminizing,” Surf. Coatings Technol., vol. 412, p. 127069, Apr. 2021, doi: 10.1016/J.SURFCOAT.2021.127069.
- [6] T. Yener, A. Erdogan, M. S. Gök, and S. Zeytin, “Formation, characterization, and wear behavior of aluminide coating on mirrax® ESR steel by low-temperature aluminizing process,” J. Tribol., vol. 143, no. 1, 2021, doi: 10.1115/1.4047667.
- [7] A. Erdogan, T. Yener, K. M. Doleker, M. E. Korkmaz, and M. S. Gök, “Low-temperature aluminizing influence on degradation of nimonic 80A surface: Microstructure, wear and high temperature oxidation behaviors,” Surfaces and Interfaces, vol. 25, p. 101240, Aug. 2021, doi: 10.1016/J.SURFIN.2021.101240.
- [8] T. Yener, K. M. Doleker, and A. Erdogan, “High temperature oxidation behavior of low temperature aluminized Mirrax® ESR steel,” Mater. Res. Express, vol. 6, no. 11, 2019, doi: 10.1088/2053-1591/ab4541.
- [9] S. S. Rahman, M. Z. I. Ashraf, M. S. Bashar, M. Kamruzzaman, A. K. M. Nurul Amin, and M. M. Hossain, “Crystallinity, surface morphology, and chemical composition of the recast layer and rutile-TiO2 formation on Ti-6Al-4V ELI by wire-EDM to enhance biocompatibility,” Int. J. Adv. Manuf. Technol., vol. 93, no. 9–12, pp. 3285–3296, 2017, doi: 10.1007/s00170-017-0772-5.
- [10] H. Du, N. Tan, L. Fan, J. Zhuang, Z. Qiu, and Y. Lei, “Formation mechanism of aluminide diffusion coatings on Ti and Ti-6Al-4V alloy at the early stages of deposition by pack cementation,” Materials (Basel)., vol. 12, no. 19, 2019, doi: 10.3390/ma12193097.
- [11] The Materials Information Society, “ASM Handbook Volume 3 - Alloy Phase Diagrams,” ASM Handbook. 1992. doi: 10.1007/BF02869318.
- [12] A. R. Rastkar, P. Parseh, N. Darvishnia, and S. M. M. Hadavi, “Microstructural evolution and hardness of TiAl 3 and TiAl 2 phases on Ti-45Al-2Nb-2Mn-1B by plasma pack aluminizing,” Appl. Surf. Sci., vol. 276, pp. 112–119, Jul. 2013, doi: 10.1016/j.apsusc.2013.03.043.
- [13] O. Gök, “Farklı Yöntemlerle Titanyum Alüminyum İntermetalik Kaplama Oluşturulması Çalışması,” İstanbul Teknik Üniversitesi, 2016.
Kutu Sementasyonu Yöntemi ile Ti6Al4V Alaşımı Üzerine Aluminid Esaslı Kaplama Üretimi
Yıl 2022,
Cilt: 3 Sayı: 2, 49 - 60, 26.12.2022
Ferhat Yılmaz
,
Gözde Çelebi Efe
,
Tuba Yener
Öz
Bu çalışma, havacılık ve biyomedikal alanlarında sık kullanılan α+β titanyum alaşımlarından olan, Ti-6Al-4V alaşımının kutu sementasyonu yöntemiyle aluminyum kaplama üretilmesi hedeflenmiştir. Bu kaplamanın karakteristik özelliklerinin taramalı elektron mikroskobu (SEM), enerji dağılımlı spektrometre (EDS) ve X-ışını kırınımı (XRD) vasıtasıyla incelenmiştir. Aluminyum kaynağı olarak Al, dolgu malzemesi olarak Al2O3 tozu ve aktivatör olarak da NH4Cl tozları açık atmosferli bir fırında 700°C sıcaklıkta 4,6 ve 8 saat aluminyumlama işlemi gerçekleştirilmiştir. Yapılan X-ışını (XRD) analizlerinde kaplama tabakası üzerinde TiAl, TiAl2 ve TiAl3 ve Al2O3 fazları tespit edilmiştir. Kaplama tabakası kalınlığı tutma sürelerine bağlı olarak 12-20 µm arasında değiştiği görülmüştür. Oluşan titanyum alüminid tabakasının kalınlığı Vickers sertlik yöntemiyle ölçülmüş ve sertlik 578-650 HV arasında sertlik değerleri ölçülmüştür. Yüzeyde homojen ve sürekli bir alüminyumca zengin kaplama tabakasına, 700°C sıcaklık 6 saat tutma süresinde ulaşılmıştır.
Kaynakça
- [1] W. Yang et al., “Evaluation of growth kinetics of aluminide coating layers on Ti-6Al-4V alloys by pack cementation and the oxidation behaviours of the coated Ti-6Al-4V alloys,” Int. J. Refract. Met. Hard Mater., vol. 101, p. 105642, Dec. 2021, doi: 10.1016/J.IJRMHM.2021.105642.
- [2] T. Yener, “Chromium-Aluminide Coatings via Pack Cementation Method on Inconel 718 Alloy and Fe-Cr-Ni SuperAlloy,” Sak. Univ. J. Sci., vol. 23, no. 5, pp. 817–823, Oct. 2019, doi: 10.16984/saufenbilder.495407.
- [3] T. Yener, “Low temperature aluminising of Fe-Cr-Ni super alloy by pack cementation,” Vacuum, vol. 162, no. September 2018, pp. 114–120, 2019, doi: 10.1016/j.vacuum.2019.01.040.
- [4] F. J. Pérez, M. P. Hierro, F. Pedraza, M. C. Carpintero, C. Gómez, and R. Tarín, “Effect of fluidized bed CVD aluminide coatings on the cyclic oxidation of austenitic AISI 304 stainless steel,” Surf. Coatings Technol., vol. 145, no. 1–3, pp. 1–7, Aug. 2001, doi: 10.1016/S0257-8972(01)01019-2.
- [5] K. M. Döleker et al., “Enhancing the wear and oxidation behaviors of the Inconel 718 by low temperature aluminizing,” Surf. Coatings Technol., vol. 412, p. 127069, Apr. 2021, doi: 10.1016/J.SURFCOAT.2021.127069.
- [6] T. Yener, A. Erdogan, M. S. Gök, and S. Zeytin, “Formation, characterization, and wear behavior of aluminide coating on mirrax® ESR steel by low-temperature aluminizing process,” J. Tribol., vol. 143, no. 1, 2021, doi: 10.1115/1.4047667.
- [7] A. Erdogan, T. Yener, K. M. Doleker, M. E. Korkmaz, and M. S. Gök, “Low-temperature aluminizing influence on degradation of nimonic 80A surface: Microstructure, wear and high temperature oxidation behaviors,” Surfaces and Interfaces, vol. 25, p. 101240, Aug. 2021, doi: 10.1016/J.SURFIN.2021.101240.
- [8] T. Yener, K. M. Doleker, and A. Erdogan, “High temperature oxidation behavior of low temperature aluminized Mirrax® ESR steel,” Mater. Res. Express, vol. 6, no. 11, 2019, doi: 10.1088/2053-1591/ab4541.
- [9] S. S. Rahman, M. Z. I. Ashraf, M. S. Bashar, M. Kamruzzaman, A. K. M. Nurul Amin, and M. M. Hossain, “Crystallinity, surface morphology, and chemical composition of the recast layer and rutile-TiO2 formation on Ti-6Al-4V ELI by wire-EDM to enhance biocompatibility,” Int. J. Adv. Manuf. Technol., vol. 93, no. 9–12, pp. 3285–3296, 2017, doi: 10.1007/s00170-017-0772-5.
- [10] H. Du, N. Tan, L. Fan, J. Zhuang, Z. Qiu, and Y. Lei, “Formation mechanism of aluminide diffusion coatings on Ti and Ti-6Al-4V alloy at the early stages of deposition by pack cementation,” Materials (Basel)., vol. 12, no. 19, 2019, doi: 10.3390/ma12193097.
- [11] The Materials Information Society, “ASM Handbook Volume 3 - Alloy Phase Diagrams,” ASM Handbook. 1992. doi: 10.1007/BF02869318.
- [12] A. R. Rastkar, P. Parseh, N. Darvishnia, and S. M. M. Hadavi, “Microstructural evolution and hardness of TiAl 3 and TiAl 2 phases on Ti-45Al-2Nb-2Mn-1B by plasma pack aluminizing,” Appl. Surf. Sci., vol. 276, pp. 112–119, Jul. 2013, doi: 10.1016/j.apsusc.2013.03.043.
- [13] O. Gök, “Farklı Yöntemlerle Titanyum Alüminyum İntermetalik Kaplama Oluşturulması Çalışması,” İstanbul Teknik Üniversitesi, 2016.