Stomatal Behaviors and Physiological Responses Affected by Iron Deficiency in Peach Plants Grafted onto Garnem and GF 677
Yıl 2021,
Cilt: 18 Sayı: 2, 303 - 311, 01.05.2021
Servet Aras
,
Hakan Keles
,
Erhan Bozkurt
Öz
Iron (Fe) is a pivotal nutrient taking roles in respiration, photosynthesis and many plant metabolisms. Chlorosis caused by Fe deficiency generally occurs in high pH environments and many fruit trees including peach are known sensitive to iron starvation. Fe starvation declines leaf chlorophyll and carotenoid contents, supresses plant growth and declines photosynthetic capacity. Iron deficiency induces responses in plants and different stomatal behaviors and physiological alterations occur to sustain the increased iron uptake capacity of Fe-deficient plants. In this study, the effects of iron deficiency on stomatal morphology and leaf physiological responses in peach variety Rich May grafted onto Garnem and GF 677 rootstocks were investigated. Plants were exposed to Fe deficient conditions for 3 months. End of the experiment, many leaf and stomatal properties were evaluated. The highest decrease in plant growth (relative growth rates of shoot diameter and length) induced by Fe deficiency was found in Rich May grafted onto Garnem. SPAD and relative anthocyanin decreased by 52 and 70% in Fe deficient Rich May/Garnem grafting combination. Decreases in SPAD and relative anthocyanin values were lower with GF 677. In GF 677, LRWC decreased by 1.8% and membrane permeability increased by 10%. Fe controlled stomatal behaviors in peach plants. Stomatal factors were found more sensitive to Fe deficiency in sensitive rootstock, Garnem. The increment in stomatal and pore areas leaded increase in stomatal conductance. The damage by Fe depletion was found higher in Garnem due to higher loss in SPAD, anthocyanin and increasing membrane permeability. Thus, GF 677 can be used in peach orchards under Fe deficiency conditions.
Destekleyen Kurum
Yozgat Bozok Üniversitesi
Proje Numarası
6602c-ZF/20-387
Teşekkür
This study was supported by the grants from Yozgat Bozok University with Project Coordination Application and Research Center with 6602c-ZF/20-387 project number.
Kaynakça
- Alarcón, A. L., Madrid, R., Egea, C. & Guillén, I. (1999). Calcium deficiency provoked by the application of different forms and concentrations of Ca2+ to soil-less cultivated muskmelons. Scientia Horticulturae, 81(1): 89-102.
- Aras, S. & Eşitken, A. (2018). Physiological responses of cherry rootstocks to short term salinity. Erwerbs-Obstbau, 60: 161-164.
- Aras, S., Arıkan, Ş., İpek, M., Eşitken, A., Pırlak, L., Dönmez, M. F. & Turan, M. (2018). Plant growth promoting rhizobacteria enhanced leaf organic acids, FC-R activity and Fe nutrition of apple under lime soil conditions. Acta Physiologiae Plantarum, 40(6):120.
- Aras, S., Eşitken, A. & Karakurt, Y. (2019). Morphological and physiological responses and some WRKY genes expression in cherry rootstocks under salt stress. Spanish Journal of Agricultural Research, 17(4): 0806.
- Arikan, Ş., Eşitken, A., İpek, M., Aras, S., Şahin, M., Pırlak, L., Dönmez, M. F. & Turan, M. (2018). Effect of plant growth promoting rhizobacteria on Fe acquisition in peach (Prunus persica L) under calcareous soil conditions. Journal of Plant Nutrition, 41 (17): 2141-2150.
- Barradas, V. L., Nicolás, E., Torrecillas, A. & Alarcón, J. J. (2005). Transpiration and canopy conductance in young apricot (Prunus armenica L.) trees subjected to different PAR levels and water stress. Agricultural Water Management, 77(1-3): 323-333.
- Bat, M., Tunçtürk, R. & Tunçtürk, M. (2020). Ekinezya (Echinacea purpurea L.) bitkisinde kuraklık stresi ve deniz yosunu uygulamalarının bazı fizyolojik parametreler üzerine etkisi. KSÜ Tarım ve Doğa Dergisi, 23(1): 99-107.
- Brouwer, B., Gardeström, P. & Keech, O. (2014). In response to partial plant shading, the lack of phytochrome A does not directly induce leaf senescence but alters the fine-tuning of chlorophyll biosynthesis. Journal of Experimental Botany, 65(14): 4037-4049.
- Del Amor, F. & Marcelis, L. F. M. (2003). Regulation of nutrient uptake, water uptake and growth under calcium starvation and recovery. Journal of Horticultural Science and Biotechnology, 7: 343-349.
- Demirbaş, S., & Balkan, A. (2018). Tuz stresi koşullarında bazı tritikale çeşitlerinin hidrojen peroksit (H2O2) ön uygulamasına tepkileri. Journal of Tekirdag Agricultural Faculty, 15(2): 5-13.
- Djennane, S., Cesbron, C., Sourice, S., Cournol, R., Dupuis, F., Eychenne, M., Loridon, K. & Chevreau, E. (2011). Iron homeostasis and fire blight susceptibility in transgenic pear plants overexpressing a pea ferritin gene. Plant Science, 180(5): 694-701.
- Donnini, S., Castagna, A., Ranieri, A. & Zocchi, G. (2009). Differential responses in pear and quince genotypes induced by Fe deficiency and bicarbonate. Journal of Plant Physiology, 166(11): 1181-1193.
- Eichert, T., Peguero‐Pina, J. J., Gil‐Pelegrín, E., Heredia, A. & Fernández, V. (2010). Effects of iron chlorosis and iron resupply on leaf xylem architecture, water relations, gas exchange and stomatal performance of field‐grown peach (Prunus persica). Physiologia Plantarum, 138(1): 48-59.
- Fernández, V., Eichert, T., Del Río, V., López-Casado, G., Heredia-Guerrero, J. A., Abadía, A., Heredia, A. & Abadía, J. (2008). Leaf structural changes associated with iron deficiency chlorosis in field-grown pear and peach: physiological implications. Plant and Soil, 311(1-2): 161.
- Gao, C., Wang, Y., Xiao, D. S., Qiu, C. P., Han, D. G., Zhang, X. Z., Wu, T. & Han, Z. H. (2011). Comparison of cadmium-induced iron-deficiency responses and genuine iron-deficiency responses in Malus xiaojinensis. Plant Science, 181(3): 269-274.
- Garcia, M. J., Corpas, F. J., Lucena, C., Alcantara, E., Perez-Vicente, R., Zamarreno, A. M., Bacaicoa, E., Garcia-Mina, J. M., Bauer, P. & Romera, F. J. (2018). A shoot Fe signaling pathway requiring the OPT3 transporter controls GSNO reductase and ethylene in Arabidopsis thaliana roots. Frontiers in Plant Science, 9: 1325.
- Gerardin, T., Douthe, C., Flexas, J. & Brendel, O. (2018). Shade and drought growth conditions strongly impact dynamic responses of stomata to variations in irradiance in Nicotiana tabacum. Environmental and Experimental Botany, 153: 188-197.
- Gruber, B. & Kosegarten, H. (2002). Depressed growth of non‐chlorotic vine grown in calcareous soil is an iron deficiency symptom prior to leaf chlorosis. Journal of Soil Science and Plant Nutrition, 165(1): 111-117.
- Hoagland, D. R. & Arnon, D. I. (1950). The water-culture method for growing plants without soil. Circular 347. Agricultural Experiment Station, University of California, Berkeley.
- Jimenez, S., Ollat, N., Deborde, C., Maucourt, M., Rellán-Álvarez, R., Moreno, M. Á. & Gogorcena, Y. (2011). Metabolic response in roots of Prunus rootstocks submitted to iron chlorosis. Journal of Plant Physiology, 168(5): 415-423.
- Jimenez, S., Pinochet, J., Abadia, A., Moreno, M. Á. & Gogorcena, Y. (2008). Tolerance response to iron chlorosis of Prunus selections as rootstocks. HortScience, 43(2): 304-309.
- Junlin, L., Lei, H., Yanhua, S., Hongen, G. & Huanchao, Z. (2019). Functional identification of Ammopiptanthus mongolicus anion channel AmSLAC1 involved in drought induced stomata closure. Plant Physiology and Biochemistry, 143: 340-350.
- Kiani-Pouya, A., Rasouli, F., Rabbi, B., Falakboland, Z., Yong, M., Chen, Z. H., Zhou, M. & Shabala, S. (2020). Stomatal traits as a determinant of superior salinity tolerance in wild barley. Journal of Plant Physiology, 245: 153108.
- Kobayashi, T. & Nishizawa N. K. (2012). Iron uptake, translocation, and regulation in higher plants. Annual Review of Plant Biology, 63: 131-152.
- Larbi, A., Abadía, A., Abadía, J. & Morales, F. (2006). Down coregulation of light absorption, photochemistry, and carboxylation in Fe-deficient plants growing in different environments. Photosynthesis Research, 89:113–126.
- Lawson, T. & Matthews, J. (2020). Guard cell metabolism and stomatal function. Annual Review of Plant Biology, 71: 273-302.
- Lutts, S., Kinet, J. M. & Bouharmont, J. (1996). NaCl-induced Senescence in Leaves of Rice (Oryza sativa L.) Cultivars Differing in Salinity Resistance. Annals of Botany, 78: 389-398.
- Mattiello, E. M., Ruiz, H. A., Neves, J. C., Ventrella, M. C. & Araújo, W. L. (2015). Zinc deficiency affects physiological and anatomical characteristics in maize leaves. Journal of Plant Physiology, 183: 138-143.
- Molassiotis, A., Tanou, G., Diamantidis, G., Patakas, A. & Therios, I. (2006). Effects of 4-month Fe deficiency exposure on Fe reduction mechanism, photosynthetic gas exchange, chlorophyll fluorescence and antioxidant defense in two peach rootstocks differing in Fe deficiency tolerance. Journal of Plant Physiology, 163(2): 176-185.
- Morales, F., Abadía, A. & Abadía, J. (1990). Characterization of the xanthophyll cycle and other photosynthetic pigment changes induced by iron deficiency in sugar beet (Beta vulgaris L.). Plant Physiology, 94(2): 607-613.
- Pommerening, A. & Muszta, A. (2016). Relative plant growth revisited: Towards a mathematical standardisation of separate approaches. Ecological Modelling, 320: 383-392.
- Ridolfi, M. & Garrec, J. P. (2000). Consequences of an excess Al and a deficiency in Ca and Mg for stomatal functioning and net carbon assimilation of beech leaves. Annals of Forest Science, 57(3): 209-218.
- Romero-Romero, J. L., Inostroza-Blancheteau, C., Orellana, D., Aquea, F., Reyes-Díaz, M., Gil, P.M., Matte, J. P. & Arce-Johnson, P. (2018). Stomata regulation by tissue-specific expression of the Citrus sinensis MYB61 transcription factor improves water-use efficiency in Arabidopsis. Plant Physiology and Biochemistry, 130: 54-60.
- Sharma, P. N., Tripathi, A., Kumar, N., Gupta, S., Kumar, P., Chatterjee, J. & Tewari, R. K. (2016). Iron plays a critical role in stomatal closure in cauliflower. Environmental and Experimental Botany, 131: 68-76.
- Shi, P., Li, B., Chen, H., Song, C., Meng J., Xi, Z. & Zhang, Z. (2017). Iron supply affects anthocyanin content and related gene expression in berries of Vitis vinifera cv. Cabernet Sauvignon. Molecules, 22(2): 283.
- Smart, R. E. & Bingham, G. E. (1974). Rapid estimates of relative water content. Plant Physiology, 53: 258-260.
- Solari, L. I., Johnson, S. & DeJong, T. M. (2006). Hydraulic conductance characteristics of peach (Prunus persica) trees on different rootstocks are related to biomass production and distribution. Tree Physiology, 26(10): 1343-1350.
- Stavrianakou, S., Liakopoulos, G. & Karabourniotis, G. (2006). Boron deficiency effects on growth, photosynthesis and relative concentrations of phenolics of Dittrichia viscosa (Asteraceae). Environmental and Experimental Botany, 56(3): 293-300.
- Tagliavini, M. & Rombolà, A. D. (2001). Iron deficiency and chlorosis in orchard and vineyard ecosystems. European Journal of Agronomy, 15(2): 71-92.
- Valipour, M., Baninasab, B., Khoshgoftarmanesh, A. H. & Gholami, M. (2020). Oxidative stress and antioxidant responses to direct and bicarbonate-induced iron deficiency in two quince rootstocks. Scientia Horticulturae, 261: 108933.
- Vráblová, M., Hronková, M., Vrábl, D., Kubásek, J. & Šantrůček, J. (2018). Light intensity-regulated stomatal development in three generations of Lepidium sativum. Environmental and Experimental Botany, 156: 316-324.
- Yin, R., Bai, T., Ma, F., Wang, X., Li, Y. & Yue, Z. (2010). Physiological responses and relative tolerance by Chinese apple rootstocks to NaCl stress. Scientia Horticulturae, 126(2): 247-252.
- Zhu, K., Yuan, F., Wang, A., Yang, H., Guan, D., Jin, C., Zhang, H., Zhang, Y. & Wu, J. (2019). Effects of soil rewatering on mesophyll and stomatal conductance and the associated mechanisms involving leaf anatomy and some physiological activities in Manchurian ash and Mongolian oak in the Changbai Mountains. Plant Physiology and Biochemistry, 144: 22-34.
Stomatal Behaviors and Physiological Responses Affected by Iron Deficiency in Peach Plants Grafted onto Garnem and GF 677
Yıl 2021,
Cilt: 18 Sayı: 2, 303 - 311, 01.05.2021
Servet Aras
,
Hakan Keles
,
Erhan Bozkurt
Öz
Demir (Fe), solunum, fotosentez ve bitkilerin birçok metabolizmasında rol alan çok önemli bir besindir. Fe eksikliğinden kaynaklanan kloroz genellikle yüksek pH'lı ortamlarda ortaya çıkar ve şeftali dahil birçok meyve ağacının demir eksikliğine duyarlı olduğu bilinmektedir. Fe eksikliği, yaprak klorofil ve karotenoid içeriğini azaltır, bitki büyümesini baskılar ve fotosentetik kapasiteyi düşürür. Demir eksikliği bitkilerde tepkilere neden olur ve stomaya ait farklı davranışlar ve fizyolojik tepkiler Fe eksikliği olan bitkilerin artan demir alım kapasitesini sürdürmek için meydana gelmektedir. Bu çalışmada Garnem ve GF 677 anaçlarına aşılı Rich May şeftali çeşidinde demir eksikliğinin stoma morfolojisi ve yaprak fizyolojik tepkileri üzerine etkileri araştırılmıştır. Bitkiler, 3 ay süreyle mineral eksikliği olan koşullara maruz bırakılmıştır. Denemenin sonunda birçok yaprak ve stoma özelliği değerlendirilmiştir. Fe noksanlığında bitki büyümesinde (sürgün çapı ve uzunluğunun nispi büyüme oranlarında) en yüksek azalış Garnem üzerine aşılı şeftalilerde görülüp, bununla birlikte yine Garnem anacına aşılı şeftalilerde SPAD ve nispi antosiyanin % 52 ve % 70 oranlarında azalmıştır. GF 677 anacı üzerine aşılı olan şeftalilerde ise SPAD ve nispi antosiyanin değerlerinde daha düşük kayba sahip olmuştur. Garnem anacına aşılı çeşitlerde yaprak oransal su içeriği (YOSİ) ve membran geçirgenliği Fe eksikliği ile artarken; GF 677'de YOSİ % 1,8 azalmış ve membran geçirgenliği % 10 artmıştır. Fe şeftali bitkisinde stoma davranışlarını kontrol etmiştir. Hassas anaç olan Garnem'de stoma faktörleri Fe eksikliğine daha duyarlı bulunmuştur. Stoma ve gözenek alanlarındaki artış, stoma iletkenliğinde artışa neden olmuştur. Fe eksikliği zararı, SPAD ve antosiyaninde daha yüksek kayıplardan ve artan membran geçirgenliğinden dolayı Garnem'de daha yüksek bulunmuştur. Bu yüzden GF 677, şeftali bahçelerinde Fe noksanlığı koşullarında kullanılabilir.
Proje Numarası
6602c-ZF/20-387
Kaynakça
- Alarcón, A. L., Madrid, R., Egea, C. & Guillén, I. (1999). Calcium deficiency provoked by the application of different forms and concentrations of Ca2+ to soil-less cultivated muskmelons. Scientia Horticulturae, 81(1): 89-102.
- Aras, S. & Eşitken, A. (2018). Physiological responses of cherry rootstocks to short term salinity. Erwerbs-Obstbau, 60: 161-164.
- Aras, S., Arıkan, Ş., İpek, M., Eşitken, A., Pırlak, L., Dönmez, M. F. & Turan, M. (2018). Plant growth promoting rhizobacteria enhanced leaf organic acids, FC-R activity and Fe nutrition of apple under lime soil conditions. Acta Physiologiae Plantarum, 40(6):120.
- Aras, S., Eşitken, A. & Karakurt, Y. (2019). Morphological and physiological responses and some WRKY genes expression in cherry rootstocks under salt stress. Spanish Journal of Agricultural Research, 17(4): 0806.
- Arikan, Ş., Eşitken, A., İpek, M., Aras, S., Şahin, M., Pırlak, L., Dönmez, M. F. & Turan, M. (2018). Effect of plant growth promoting rhizobacteria on Fe acquisition in peach (Prunus persica L) under calcareous soil conditions. Journal of Plant Nutrition, 41 (17): 2141-2150.
- Barradas, V. L., Nicolás, E., Torrecillas, A. & Alarcón, J. J. (2005). Transpiration and canopy conductance in young apricot (Prunus armenica L.) trees subjected to different PAR levels and water stress. Agricultural Water Management, 77(1-3): 323-333.
- Bat, M., Tunçtürk, R. & Tunçtürk, M. (2020). Ekinezya (Echinacea purpurea L.) bitkisinde kuraklık stresi ve deniz yosunu uygulamalarının bazı fizyolojik parametreler üzerine etkisi. KSÜ Tarım ve Doğa Dergisi, 23(1): 99-107.
- Brouwer, B., Gardeström, P. & Keech, O. (2014). In response to partial plant shading, the lack of phytochrome A does not directly induce leaf senescence but alters the fine-tuning of chlorophyll biosynthesis. Journal of Experimental Botany, 65(14): 4037-4049.
- Del Amor, F. & Marcelis, L. F. M. (2003). Regulation of nutrient uptake, water uptake and growth under calcium starvation and recovery. Journal of Horticultural Science and Biotechnology, 7: 343-349.
- Demirbaş, S., & Balkan, A. (2018). Tuz stresi koşullarında bazı tritikale çeşitlerinin hidrojen peroksit (H2O2) ön uygulamasına tepkileri. Journal of Tekirdag Agricultural Faculty, 15(2): 5-13.
- Djennane, S., Cesbron, C., Sourice, S., Cournol, R., Dupuis, F., Eychenne, M., Loridon, K. & Chevreau, E. (2011). Iron homeostasis and fire blight susceptibility in transgenic pear plants overexpressing a pea ferritin gene. Plant Science, 180(5): 694-701.
- Donnini, S., Castagna, A., Ranieri, A. & Zocchi, G. (2009). Differential responses in pear and quince genotypes induced by Fe deficiency and bicarbonate. Journal of Plant Physiology, 166(11): 1181-1193.
- Eichert, T., Peguero‐Pina, J. J., Gil‐Pelegrín, E., Heredia, A. & Fernández, V. (2010). Effects of iron chlorosis and iron resupply on leaf xylem architecture, water relations, gas exchange and stomatal performance of field‐grown peach (Prunus persica). Physiologia Plantarum, 138(1): 48-59.
- Fernández, V., Eichert, T., Del Río, V., López-Casado, G., Heredia-Guerrero, J. A., Abadía, A., Heredia, A. & Abadía, J. (2008). Leaf structural changes associated with iron deficiency chlorosis in field-grown pear and peach: physiological implications. Plant and Soil, 311(1-2): 161.
- Gao, C., Wang, Y., Xiao, D. S., Qiu, C. P., Han, D. G., Zhang, X. Z., Wu, T. & Han, Z. H. (2011). Comparison of cadmium-induced iron-deficiency responses and genuine iron-deficiency responses in Malus xiaojinensis. Plant Science, 181(3): 269-274.
- Garcia, M. J., Corpas, F. J., Lucena, C., Alcantara, E., Perez-Vicente, R., Zamarreno, A. M., Bacaicoa, E., Garcia-Mina, J. M., Bauer, P. & Romera, F. J. (2018). A shoot Fe signaling pathway requiring the OPT3 transporter controls GSNO reductase and ethylene in Arabidopsis thaliana roots. Frontiers in Plant Science, 9: 1325.
- Gerardin, T., Douthe, C., Flexas, J. & Brendel, O. (2018). Shade and drought growth conditions strongly impact dynamic responses of stomata to variations in irradiance in Nicotiana tabacum. Environmental and Experimental Botany, 153: 188-197.
- Gruber, B. & Kosegarten, H. (2002). Depressed growth of non‐chlorotic vine grown in calcareous soil is an iron deficiency symptom prior to leaf chlorosis. Journal of Soil Science and Plant Nutrition, 165(1): 111-117.
- Hoagland, D. R. & Arnon, D. I. (1950). The water-culture method for growing plants without soil. Circular 347. Agricultural Experiment Station, University of California, Berkeley.
- Jimenez, S., Ollat, N., Deborde, C., Maucourt, M., Rellán-Álvarez, R., Moreno, M. Á. & Gogorcena, Y. (2011). Metabolic response in roots of Prunus rootstocks submitted to iron chlorosis. Journal of Plant Physiology, 168(5): 415-423.
- Jimenez, S., Pinochet, J., Abadia, A., Moreno, M. Á. & Gogorcena, Y. (2008). Tolerance response to iron chlorosis of Prunus selections as rootstocks. HortScience, 43(2): 304-309.
- Junlin, L., Lei, H., Yanhua, S., Hongen, G. & Huanchao, Z. (2019). Functional identification of Ammopiptanthus mongolicus anion channel AmSLAC1 involved in drought induced stomata closure. Plant Physiology and Biochemistry, 143: 340-350.
- Kiani-Pouya, A., Rasouli, F., Rabbi, B., Falakboland, Z., Yong, M., Chen, Z. H., Zhou, M. & Shabala, S. (2020). Stomatal traits as a determinant of superior salinity tolerance in wild barley. Journal of Plant Physiology, 245: 153108.
- Kobayashi, T. & Nishizawa N. K. (2012). Iron uptake, translocation, and regulation in higher plants. Annual Review of Plant Biology, 63: 131-152.
- Larbi, A., Abadía, A., Abadía, J. & Morales, F. (2006). Down coregulation of light absorption, photochemistry, and carboxylation in Fe-deficient plants growing in different environments. Photosynthesis Research, 89:113–126.
- Lawson, T. & Matthews, J. (2020). Guard cell metabolism and stomatal function. Annual Review of Plant Biology, 71: 273-302.
- Lutts, S., Kinet, J. M. & Bouharmont, J. (1996). NaCl-induced Senescence in Leaves of Rice (Oryza sativa L.) Cultivars Differing in Salinity Resistance. Annals of Botany, 78: 389-398.
- Mattiello, E. M., Ruiz, H. A., Neves, J. C., Ventrella, M. C. & Araújo, W. L. (2015). Zinc deficiency affects physiological and anatomical characteristics in maize leaves. Journal of Plant Physiology, 183: 138-143.
- Molassiotis, A., Tanou, G., Diamantidis, G., Patakas, A. & Therios, I. (2006). Effects of 4-month Fe deficiency exposure on Fe reduction mechanism, photosynthetic gas exchange, chlorophyll fluorescence and antioxidant defense in two peach rootstocks differing in Fe deficiency tolerance. Journal of Plant Physiology, 163(2): 176-185.
- Morales, F., Abadía, A. & Abadía, J. (1990). Characterization of the xanthophyll cycle and other photosynthetic pigment changes induced by iron deficiency in sugar beet (Beta vulgaris L.). Plant Physiology, 94(2): 607-613.
- Pommerening, A. & Muszta, A. (2016). Relative plant growth revisited: Towards a mathematical standardisation of separate approaches. Ecological Modelling, 320: 383-392.
- Ridolfi, M. & Garrec, J. P. (2000). Consequences of an excess Al and a deficiency in Ca and Mg for stomatal functioning and net carbon assimilation of beech leaves. Annals of Forest Science, 57(3): 209-218.
- Romero-Romero, J. L., Inostroza-Blancheteau, C., Orellana, D., Aquea, F., Reyes-Díaz, M., Gil, P.M., Matte, J. P. & Arce-Johnson, P. (2018). Stomata regulation by tissue-specific expression of the Citrus sinensis MYB61 transcription factor improves water-use efficiency in Arabidopsis. Plant Physiology and Biochemistry, 130: 54-60.
- Sharma, P. N., Tripathi, A., Kumar, N., Gupta, S., Kumar, P., Chatterjee, J. & Tewari, R. K. (2016). Iron plays a critical role in stomatal closure in cauliflower. Environmental and Experimental Botany, 131: 68-76.
- Shi, P., Li, B., Chen, H., Song, C., Meng J., Xi, Z. & Zhang, Z. (2017). Iron supply affects anthocyanin content and related gene expression in berries of Vitis vinifera cv. Cabernet Sauvignon. Molecules, 22(2): 283.
- Smart, R. E. & Bingham, G. E. (1974). Rapid estimates of relative water content. Plant Physiology, 53: 258-260.
- Solari, L. I., Johnson, S. & DeJong, T. M. (2006). Hydraulic conductance characteristics of peach (Prunus persica) trees on different rootstocks are related to biomass production and distribution. Tree Physiology, 26(10): 1343-1350.
- Stavrianakou, S., Liakopoulos, G. & Karabourniotis, G. (2006). Boron deficiency effects on growth, photosynthesis and relative concentrations of phenolics of Dittrichia viscosa (Asteraceae). Environmental and Experimental Botany, 56(3): 293-300.
- Tagliavini, M. & Rombolà, A. D. (2001). Iron deficiency and chlorosis in orchard and vineyard ecosystems. European Journal of Agronomy, 15(2): 71-92.
- Valipour, M., Baninasab, B., Khoshgoftarmanesh, A. H. & Gholami, M. (2020). Oxidative stress and antioxidant responses to direct and bicarbonate-induced iron deficiency in two quince rootstocks. Scientia Horticulturae, 261: 108933.
- Vráblová, M., Hronková, M., Vrábl, D., Kubásek, J. & Šantrůček, J. (2018). Light intensity-regulated stomatal development in three generations of Lepidium sativum. Environmental and Experimental Botany, 156: 316-324.
- Yin, R., Bai, T., Ma, F., Wang, X., Li, Y. & Yue, Z. (2010). Physiological responses and relative tolerance by Chinese apple rootstocks to NaCl stress. Scientia Horticulturae, 126(2): 247-252.
- Zhu, K., Yuan, F., Wang, A., Yang, H., Guan, D., Jin, C., Zhang, H., Zhang, Y. & Wu, J. (2019). Effects of soil rewatering on mesophyll and stomatal conductance and the associated mechanisms involving leaf anatomy and some physiological activities in Manchurian ash and Mongolian oak in the Changbai Mountains. Plant Physiology and Biochemistry, 144: 22-34.