Araştırma Makalesi
BibTex RIS Kaynak Göster

Kısıntılı Sulama Koşullarında Yetiştirilen Kıvırcık Marulda Bitki Kök Bölgesindeki Tuzluluk Birikimi

Yıl 2021, Cilt: 18 Sayı: 3, 508 - 520, 07.09.2021
https://doi.org/10.33462/jotaf.846652

Öz

Bu çalışmada, kıvırcık marul bitkisi için sulama sezonu başlangıcına kıyasla sulama sezonu bitiminde meydana gelen kök bölgesi içindeki tuz birikimi durumu araştırılmıştır. 2018 yılı ilkbahar yetişme döneminde yay çatılı plastik örtülü bir serada yürütülen çalışmada, bitki materyali olarak Campania kıvırcık marul (Lactuca sativa var. crispa) çeşidi kullanılmıştır. Araştırmada, bitki kök bölgesinin her iki tarafının ıslatıldığı geleneksel sulama (GS125, GS100, GS75, GS50) ile birlikte ardışık yarı ıslatmalı sulama (AYIS125, AYIS100, AYIS75, AYIS50) uygulamaları ele alınmıştır. Ardışık yarı ıslatmalı sulama (AYIS) uygulamasında, sırasıyla takip eden sulamalarda ıslak ve kuru kısımlar yer değiştirilmiştir. Diğer bir ifadeyle, AYIS uygulamasında, sulamalar sırasında bitki kök bölgesinin bir yarısı görece olarak ıslatılırken geriye kalan diğer yarısı görece olarak kuru bırakılmış ve bir sonraki sulamada ıslak ve kuru bırakılan kısımlar yer değiştirilmiştir. Bitki kök bölgesi tuzluluk birikimini belirlemek için sulama sezonu başlangıcında üç yinelemeli olarak araziyi temsil edecek şekilde 0-10, 10-20 ve 20-30 cm derinliklerden toprak örneği alınmıştır. Benzer bir şekilde, sulama sezonu bitiminde de, yine üç yinelemeli olarak, her sulama uygulaması altında bitki kök bölgesinden toprak örnekleri alınmıştır. Geleneksel yöntem kullanılarak, laboratuvarda toprak örneklerinden çamur süzükleri elde edilmiş ve tuzluluk ölçümleri yapılmıştır. En düşük tuzluluk değeri GS100 uygulamasında 0.49 dS m-1 olarak ölçülürken, en yüksek tuzluluk değeri ise 1.40 0.49 dS m-1 olarak GS125 uygulamasında kaydedilmiştir. Genel olarak, sezon sonunda en yüksek tuzluluk artışı ilk katman (0-10 cm) için %48, ikinci katman (10-20 cm) için %34 ve üçüncü katman (20-30 cm) için %45 olarak GS125 sulama uygulamasında hesaplanmıştır. Bu artış oranları dikkate alınması gereken değerlerdir. Sonuç olarak, sürdürülebilir bir sulu tarım için yetişme sezonunda iyi bir drenaj sistemi vasıtasıyla, topraktaki tuz birikiminin etkin bir yıkama işlemiyle giderilmesi önerilmektedir.

Destekleyen Kurum

Akdeniz Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından desteklenmiştir

Proje Numarası

FBA-2018-3129

Kaynakça

  • Alomran, A. M., Louki, I. I., Aly, A. A., Nadeem, M. E. (2013). Impact of deficit irrigation on soil salinity and cucumber yield under greenhouse condition in an arid environment. Journal of Agricultural Science and Technology 15: 1247-1259.
  • Anonim (2018). https://www.fidanfide.com/campania-kivircik-marul-fidesi. [Son erişim tarihi: 13.06.2018].
  • Anonim (2019). Bitkisel Üretim İstatistikleri, https://data.tuik.gov.tr/tr/display-bulletin/?bulletin=bitkisel-uretim-istatistikleri-2019-30685#, Son Erişim Tarihi: 19.10.2020
  • Anonymous (1982). Methods of Soil Analysis (Ed. A.L. Page). Number 9, Part 2, Madison, Wisconsin, USA, 1159 pp.
  • Anonymous (2017). http://www.worldatlas.com/articles/world-leaders-in-lettuce production.html. [Son erişim tarihi: 23.07.2017].
  • Anonymous (2018). Food and Agriculture Organization of the United Nations. http://www.fao.org/faostat/en/#data, Son Erişim tarihi: 19.10.2020.
  • Aragüésa, R., Medinaa, E. T. Martínez-Cobb, A., Faci, J. (2014). Effects of deficit irrigation strategies on soil salinizationand sodification in a semiarid drip-irrigated peach orchard. Agricultural Water Management 142: 1–9.
  • Ayers, R.S., Westcot, D.W. (1989). Water quality for agriculture. Irrigation and Drainage Paper, Food and Agriculture Organization of the United Nations, 29, Rev.1. Rome, 173 s.
  • Black, C. A. (1957). Soil-plant relationships. John Wiley and Sons, Inc., New York.
  • Black, C. A. (1965). Methods of Soil Analysis Part 2, Amer. Society of Agronomy Inc., Publisher Madisson, Wilconsin, U.S.A., p:1372-1376.
  • Bouyoucos, G. J. (1951). A recalibration of the hydrometer method for making mechanical analysis of the soils. Agronomy Journal 4(9): 434.
  • Cetin, M., Kirda, C. (2003). Spatial and temporal changes of soil salinity in a cotton field irrigated with low-quality water. Journal of Hydrology 272: 238-249.
  • Chaffey, N. (2001). Restricting water supply enhances crop growth. Trends in Plant Science 6: pp. 346.
  • Evliya, H. (1964). Kültür Bitkilerinin Beslenmesi. Ankara Üniversitesi Ziraat Fakültesi Yayınları, Sayı:10, Ankara.
  • Hsiao, T., Steduto, P., Fereres, E. (2007). A systematic and quantitative approach toimprove water use efficiency in agriculture. Irrig. Sci. 25: 209–231.
  • Imanishi, J., Morimoto, Y., Imanishi, A., Sugimoto, K., Isoda, K. (2007). The independent detection of drought stress and leaf density using hyperspectral resolution data. Landscape Ecol Eng 3:55–65.
  • İstanbulluoğlu, A., Konukcu, F., Kocaman, İ. (2006). Development of Water Resources and Agricultural Practices under Irrigation in Thrace Region: Analysis of Existing Data for the Solution of Problems. Tekirdağ Ziraat Fakültesi Dergisi- Journal of Tekirdag Agricultural Faculty 3(2): 139-152.
  • Jackson, M. L. (1967). Soil Chemical Analysis. Prentice Hall of India Private Limited, New Delhi.
  • Kacar, B. (1972). Bitki ve Toprağın Kimyasal Analizleri. II. Bitki Analizleri, A.Ü. Ziraat Fak. Yayınları: 453, Ankara.
  • Kaman, H., Kirda, C., Cetin, M., Topcu, S. (2006). Salt accumulation in the root zones of tomato and cotton irrigated with partial root-drying technique. Irrigation and Drainage 533–544.
  • Kaman, H., Kirda, C., Sesveren, S. (2011). Genotypic differences of maize in grain yield response to deficit irrigation. Agricultural Water Management 98(5): 801-807.
  • Kaman, H., Özbek, Ö. (2012). Salt and water distributions in the plant root zone under deficit irrigation. Journal of Food, Agriculture & Environment 496-500.
  • Kaman, H., Özbek, Ö. (2016a). Salt accumulation in the root zone of eggplant irrigated using partial root drying technique. International Journal of Agriculture & Biology 18: 435‒440.
  • Kaman, H., Özbek, Ö. (2016b). Salinity Accumulation in the Root Zones of Cucumber under Drip Irrigation Practices. Proceedings of the VI Balkan Symposium on Vegetables and Potatoes, Acta Hortic. 1142: 75-80.
  • Kaman, H., Demir, H., Sonmez, I., Polat, E., Mohamoud, S.S., Ucok, Z. (2020). Salinity of the root zone of lettuce irrigated with partial root drying. Fresenius Environmental Bulletin 29(09A): 8496-8502.
  • Kanber, R., Bastuğ, R., Büyüktaş, D., Ünlü, M., Kapur, B. (2010). Küresel İklim Değişikliğinin Su Kaynakları Ve Tarımsal Sulamaya Etkileri, sayfa 83-118, Türkiye.
  • Kanber, R., Ünlü, M. (2010). Tarımda Su ve Toprak Tuzluluğu. Ç.Ü. Ziraat Fakültesi, Genel Yayın No: 281, Kitap Yayın No: A-87, Adana.
  • Kang, S., Liang, Z., Hu, W., Zhang, J. (1998). Water use efficiency of controlled alternate irrigation on root- divided maize plants. Agricultural Water Management 38: 69-76.
  • Kirda, C., Baytorun, N. (2000). Fertigation under Saline Conditions: Irrigation Management Minimizing Soil Salinity Risk. In the Plant Nutrient Management under Pressurized Irrigation Systems in the Mediterranean Region by Ryan, J. (ed), Proceedings of the IMPHOS International Fertigation Workshop Organized by the World Phosphate Institute (IMPHOS), 25-27 April 1999, Amman, Jordan. ICARDA, Aleppo, Syria, pp. 288-296.
  • Kirda, C., Cetin, M., Dasgan, Y., Topcu, S., Kaman, H., Ekici, B., Derici, M. R., Ozguven, A. I. (2004). Yield response of greenhouse grown tomato to partial root drying and conventional deficit irrigation. Agricultural Water Management 69: 191–201.
  • Kirda, C., Topcu, S., Kaman, H., Ulger, A. C., Yazici, A., Cetin, M., Derici, M. R. (2005). Grain yield response and n-fertiliser recovery of maize under deficit irrigation. Field Crop Res. 93: 132–141.
  • Kırda, C., Topaloğlu, F., Topçu, S., Kaman, H. (2007). Mandarin yield response to partial root drying and conventional deficit irrigation. Turk. J. Agric. For., 31: 1-10.
  • Konukcu, F., Akbuğa, R. (2006). Impact of Shallow and Saline Water Tables on the Soil’s Water and Salt Balance of Konya-Cumra District under Irrigation. Tekirdağ Ziraat Fakültesi Dergisi- Journal of Tekirdag Agricultural Faculty 3(2): 105-117.
  • Lindsay, W. L., Norvell, W. A. (1978). Development of a DTPA soil test for Zinc, Iron, Manganese and Copper. Soil Science Society of America Journal 42(3): 421-428.
  • Maas, E. W. (1986). Salt tolerance of plants. Applied Agriculture Research 1:12-26.
  • Olsen, S. R., Sommers, E. L. (1982) Phosphorus Availability Indices. Phosphorus soluble in sodium bicarbonate. In: Methods of soil analysis, Part II. Chemical and microbiological properties. ASA-SSSA, Agronomy Series, No:9. Madison. Wisconsin, USA. pp.404-430.
  • Öktüren Asri, F., Demirtaş, E.I., Arı, N., Özkan, F. (2013). Determination of irrigation water qualities of Bilecik-Osmaneli district. Akdeniz Univ. Ziraat Fak. Derg. 26(1): 49-55.
  • Raine, S. R., Meyer, W. S., Rassam, D. W., Hutson, J. L., Cook, F. J. (2007). Soil-water andsolute movement under precision irrigation: knowledge gaps for managing sus-tainable root zones. Irrig. Sci. 26: 91–100.
  • Şalk, A., Arın, L., Deveci, M., Polat, S. (2008). Özel Sebzecilik. Namık Kemal Üniversitesi, Ziraat Fakültesi, Onur Grafik, Matbaa ve Reklam, İstanbul.

Salinity Accumulation in the Root Area of the Curly Lettuce Grown in Deficit Irrigation Conditions

Yıl 2021, Cilt: 18 Sayı: 3, 508 - 520, 07.09.2021
https://doi.org/10.33462/jotaf.846652

Öz

Salt accumulation in the root zone at the end of the irrigation season compared to the beginning of the irrigation season was investigated for curly lettuce plants in this study. The study was conducted in a spring-roofed plastic-covered greenhouse in a spring growing season in 2018 and the Campania curly lettuce (Lactuca sativa var. crispa) variety was used as the plant material. The conventional drip irrigation (GS125, GS100, GS75 and GS50) and partial root drying technique (AYIS125, AYIS100, AYIS75 and AYIS50) applications were investigated in the study. In the alternate partial root drying technique (APRD) application, the wet and dry parts were replaced in the following irrigations, respectively. In other words, in APRD application, while one half of the plant root area was wetted relatively during irrigation, the remaining half was left relatively dry and the parts left wet and dry in the next irrigation were replaced. In order to determine the salinity accumulation in the plant root zone, soil samples were taken from 0-10, 10-20 and 20-30 cm depths to represent the soil in three replicates at the beginning of the irrigation season. Similarly, at the end of the irrigation season, soil samples were taken from the plant root area in three replicates under each irrigation application. Mud strainers were obtained from soil samples using the traditional method in the laboratory and salinity measurements were made. While the lowest salinity value was measured as 0.49 dS m-1 in GS100 application, the highest salinity value was recorded as 1.40 dS m-1 in GS125 application. In general, the highest salinity increase at the end of the season was calculated in GS125 irrigation application as 48% for the first layer (0-10 cm), 34% for the second layer (10-20 cm) and 45% for the third layer (20-30 cm). These increase rates are values that should be taken into account. As a result, it is recommended to remove the salt accumulation in the soil by an effective washing process through a good drainage system end of the growing season for a sustainable irrigated agriculture.

Proje Numarası

FBA-2018-3129

Kaynakça

  • Alomran, A. M., Louki, I. I., Aly, A. A., Nadeem, M. E. (2013). Impact of deficit irrigation on soil salinity and cucumber yield under greenhouse condition in an arid environment. Journal of Agricultural Science and Technology 15: 1247-1259.
  • Anonim (2018). https://www.fidanfide.com/campania-kivircik-marul-fidesi. [Son erişim tarihi: 13.06.2018].
  • Anonim (2019). Bitkisel Üretim İstatistikleri, https://data.tuik.gov.tr/tr/display-bulletin/?bulletin=bitkisel-uretim-istatistikleri-2019-30685#, Son Erişim Tarihi: 19.10.2020
  • Anonymous (1982). Methods of Soil Analysis (Ed. A.L. Page). Number 9, Part 2, Madison, Wisconsin, USA, 1159 pp.
  • Anonymous (2017). http://www.worldatlas.com/articles/world-leaders-in-lettuce production.html. [Son erişim tarihi: 23.07.2017].
  • Anonymous (2018). Food and Agriculture Organization of the United Nations. http://www.fao.org/faostat/en/#data, Son Erişim tarihi: 19.10.2020.
  • Aragüésa, R., Medinaa, E. T. Martínez-Cobb, A., Faci, J. (2014). Effects of deficit irrigation strategies on soil salinizationand sodification in a semiarid drip-irrigated peach orchard. Agricultural Water Management 142: 1–9.
  • Ayers, R.S., Westcot, D.W. (1989). Water quality for agriculture. Irrigation and Drainage Paper, Food and Agriculture Organization of the United Nations, 29, Rev.1. Rome, 173 s.
  • Black, C. A. (1957). Soil-plant relationships. John Wiley and Sons, Inc., New York.
  • Black, C. A. (1965). Methods of Soil Analysis Part 2, Amer. Society of Agronomy Inc., Publisher Madisson, Wilconsin, U.S.A., p:1372-1376.
  • Bouyoucos, G. J. (1951). A recalibration of the hydrometer method for making mechanical analysis of the soils. Agronomy Journal 4(9): 434.
  • Cetin, M., Kirda, C. (2003). Spatial and temporal changes of soil salinity in a cotton field irrigated with low-quality water. Journal of Hydrology 272: 238-249.
  • Chaffey, N. (2001). Restricting water supply enhances crop growth. Trends in Plant Science 6: pp. 346.
  • Evliya, H. (1964). Kültür Bitkilerinin Beslenmesi. Ankara Üniversitesi Ziraat Fakültesi Yayınları, Sayı:10, Ankara.
  • Hsiao, T., Steduto, P., Fereres, E. (2007). A systematic and quantitative approach toimprove water use efficiency in agriculture. Irrig. Sci. 25: 209–231.
  • Imanishi, J., Morimoto, Y., Imanishi, A., Sugimoto, K., Isoda, K. (2007). The independent detection of drought stress and leaf density using hyperspectral resolution data. Landscape Ecol Eng 3:55–65.
  • İstanbulluoğlu, A., Konukcu, F., Kocaman, İ. (2006). Development of Water Resources and Agricultural Practices under Irrigation in Thrace Region: Analysis of Existing Data for the Solution of Problems. Tekirdağ Ziraat Fakültesi Dergisi- Journal of Tekirdag Agricultural Faculty 3(2): 139-152.
  • Jackson, M. L. (1967). Soil Chemical Analysis. Prentice Hall of India Private Limited, New Delhi.
  • Kacar, B. (1972). Bitki ve Toprağın Kimyasal Analizleri. II. Bitki Analizleri, A.Ü. Ziraat Fak. Yayınları: 453, Ankara.
  • Kaman, H., Kirda, C., Cetin, M., Topcu, S. (2006). Salt accumulation in the root zones of tomato and cotton irrigated with partial root-drying technique. Irrigation and Drainage 533–544.
  • Kaman, H., Kirda, C., Sesveren, S. (2011). Genotypic differences of maize in grain yield response to deficit irrigation. Agricultural Water Management 98(5): 801-807.
  • Kaman, H., Özbek, Ö. (2012). Salt and water distributions in the plant root zone under deficit irrigation. Journal of Food, Agriculture & Environment 496-500.
  • Kaman, H., Özbek, Ö. (2016a). Salt accumulation in the root zone of eggplant irrigated using partial root drying technique. International Journal of Agriculture & Biology 18: 435‒440.
  • Kaman, H., Özbek, Ö. (2016b). Salinity Accumulation in the Root Zones of Cucumber under Drip Irrigation Practices. Proceedings of the VI Balkan Symposium on Vegetables and Potatoes, Acta Hortic. 1142: 75-80.
  • Kaman, H., Demir, H., Sonmez, I., Polat, E., Mohamoud, S.S., Ucok, Z. (2020). Salinity of the root zone of lettuce irrigated with partial root drying. Fresenius Environmental Bulletin 29(09A): 8496-8502.
  • Kanber, R., Bastuğ, R., Büyüktaş, D., Ünlü, M., Kapur, B. (2010). Küresel İklim Değişikliğinin Su Kaynakları Ve Tarımsal Sulamaya Etkileri, sayfa 83-118, Türkiye.
  • Kanber, R., Ünlü, M. (2010). Tarımda Su ve Toprak Tuzluluğu. Ç.Ü. Ziraat Fakültesi, Genel Yayın No: 281, Kitap Yayın No: A-87, Adana.
  • Kang, S., Liang, Z., Hu, W., Zhang, J. (1998). Water use efficiency of controlled alternate irrigation on root- divided maize plants. Agricultural Water Management 38: 69-76.
  • Kirda, C., Baytorun, N. (2000). Fertigation under Saline Conditions: Irrigation Management Minimizing Soil Salinity Risk. In the Plant Nutrient Management under Pressurized Irrigation Systems in the Mediterranean Region by Ryan, J. (ed), Proceedings of the IMPHOS International Fertigation Workshop Organized by the World Phosphate Institute (IMPHOS), 25-27 April 1999, Amman, Jordan. ICARDA, Aleppo, Syria, pp. 288-296.
  • Kirda, C., Cetin, M., Dasgan, Y., Topcu, S., Kaman, H., Ekici, B., Derici, M. R., Ozguven, A. I. (2004). Yield response of greenhouse grown tomato to partial root drying and conventional deficit irrigation. Agricultural Water Management 69: 191–201.
  • Kirda, C., Topcu, S., Kaman, H., Ulger, A. C., Yazici, A., Cetin, M., Derici, M. R. (2005). Grain yield response and n-fertiliser recovery of maize under deficit irrigation. Field Crop Res. 93: 132–141.
  • Kırda, C., Topaloğlu, F., Topçu, S., Kaman, H. (2007). Mandarin yield response to partial root drying and conventional deficit irrigation. Turk. J. Agric. For., 31: 1-10.
  • Konukcu, F., Akbuğa, R. (2006). Impact of Shallow and Saline Water Tables on the Soil’s Water and Salt Balance of Konya-Cumra District under Irrigation. Tekirdağ Ziraat Fakültesi Dergisi- Journal of Tekirdag Agricultural Faculty 3(2): 105-117.
  • Lindsay, W. L., Norvell, W. A. (1978). Development of a DTPA soil test for Zinc, Iron, Manganese and Copper. Soil Science Society of America Journal 42(3): 421-428.
  • Maas, E. W. (1986). Salt tolerance of plants. Applied Agriculture Research 1:12-26.
  • Olsen, S. R., Sommers, E. L. (1982) Phosphorus Availability Indices. Phosphorus soluble in sodium bicarbonate. In: Methods of soil analysis, Part II. Chemical and microbiological properties. ASA-SSSA, Agronomy Series, No:9. Madison. Wisconsin, USA. pp.404-430.
  • Öktüren Asri, F., Demirtaş, E.I., Arı, N., Özkan, F. (2013). Determination of irrigation water qualities of Bilecik-Osmaneli district. Akdeniz Univ. Ziraat Fak. Derg. 26(1): 49-55.
  • Raine, S. R., Meyer, W. S., Rassam, D. W., Hutson, J. L., Cook, F. J. (2007). Soil-water andsolute movement under precision irrigation: knowledge gaps for managing sus-tainable root zones. Irrig. Sci. 26: 91–100.
  • Şalk, A., Arın, L., Deveci, M., Polat, S. (2008). Özel Sebzecilik. Namık Kemal Üniversitesi, Ziraat Fakültesi, Onur Grafik, Matbaa ve Reklam, İstanbul.
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Harun Kaman 0000-0001-9308-3690

Halil Demir 0000-0003-2237-5439

İlker Sönmez 0000-0001-7264-7805

Ersin Polat 0000-0003-2414-5071

Salahudin Saed Mohamoud Bu kişi benim 0000-0002-6574-0355

Zafer Üçok Bu kişi benim 0000-0001-8380-3551

Proje Numarası FBA-2018-3129
Yayımlanma Tarihi 7 Eylül 2021
Gönderilme Tarihi 24 Aralık 2020
Kabul Tarihi 24 Şubat 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 18 Sayı: 3

Kaynak Göster

APA Kaman, H., Demir, H., Sönmez, İ., Polat, E., vd. (2021). Kısıntılı Sulama Koşullarında Yetiştirilen Kıvırcık Marulda Bitki Kök Bölgesindeki Tuzluluk Birikimi. Tekirdağ Ziraat Fakültesi Dergisi, 18(3), 508-520. https://doi.org/10.33462/jotaf.846652
AMA Kaman H, Demir H, Sönmez İ, Polat E, Mohamoud SS, Üçok Z. Kısıntılı Sulama Koşullarında Yetiştirilen Kıvırcık Marulda Bitki Kök Bölgesindeki Tuzluluk Birikimi. JOTAF. Eylül 2021;18(3):508-520. doi:10.33462/jotaf.846652
Chicago Kaman, Harun, Halil Demir, İlker Sönmez, Ersin Polat, Salahudin Saed Mohamoud, ve Zafer Üçok. “Kısıntılı Sulama Koşullarında Yetiştirilen Kıvırcık Marulda Bitki Kök Bölgesindeki Tuzluluk Birikimi”. Tekirdağ Ziraat Fakültesi Dergisi 18, sy. 3 (Eylül 2021): 508-20. https://doi.org/10.33462/jotaf.846652.
EndNote Kaman H, Demir H, Sönmez İ, Polat E, Mohamoud SS, Üçok Z (01 Eylül 2021) Kısıntılı Sulama Koşullarında Yetiştirilen Kıvırcık Marulda Bitki Kök Bölgesindeki Tuzluluk Birikimi. Tekirdağ Ziraat Fakültesi Dergisi 18 3 508–520.
IEEE H. Kaman, H. Demir, İ. Sönmez, E. Polat, S. S. Mohamoud, ve Z. Üçok, “Kısıntılı Sulama Koşullarında Yetiştirilen Kıvırcık Marulda Bitki Kök Bölgesindeki Tuzluluk Birikimi”, JOTAF, c. 18, sy. 3, ss. 508–520, 2021, doi: 10.33462/jotaf.846652.
ISNAD Kaman, Harun vd. “Kısıntılı Sulama Koşullarında Yetiştirilen Kıvırcık Marulda Bitki Kök Bölgesindeki Tuzluluk Birikimi”. Tekirdağ Ziraat Fakültesi Dergisi 18/3 (Eylül 2021), 508-520. https://doi.org/10.33462/jotaf.846652.
JAMA Kaman H, Demir H, Sönmez İ, Polat E, Mohamoud SS, Üçok Z. Kısıntılı Sulama Koşullarında Yetiştirilen Kıvırcık Marulda Bitki Kök Bölgesindeki Tuzluluk Birikimi. JOTAF. 2021;18:508–520.
MLA Kaman, Harun vd. “Kısıntılı Sulama Koşullarında Yetiştirilen Kıvırcık Marulda Bitki Kök Bölgesindeki Tuzluluk Birikimi”. Tekirdağ Ziraat Fakültesi Dergisi, c. 18, sy. 3, 2021, ss. 508-20, doi:10.33462/jotaf.846652.
Vancouver Kaman H, Demir H, Sönmez İ, Polat E, Mohamoud SS, Üçok Z. Kısıntılı Sulama Koşullarında Yetiştirilen Kıvırcık Marulda Bitki Kök Bölgesindeki Tuzluluk Birikimi. JOTAF. 2021;18(3):508-20.