Araştırma Makalesi
BibTex RIS Kaynak Göster

Soyanın Farklı Gelişim Dönemlerinde Uygulanan Yaprak Gübresinin Yaprak Alanı, Klorofil ve Besin İçeriklerine Etkisi

Yıl 2022, Cilt: 19 Sayı: 4, 712 - 723, 23.12.2022
https://doi.org/10.33462/jotaf.963971

Öz

Optimum büyümenin sağlanması ve yüksek verim için bitkiler, bitki besin elementlerinin toprakta alınabilir formda ve yeterince var olmasına gereksinim duymaktadır. Ancak, Akdeniz Bölgesi gibi kireç içeriği ve pH’sı yüksek topraklarda bulunan makro ve mikro besin elementlerinin bitkiler tarafından alımı kısıtlı olmakta, bazı durumlarda ise bitki tarafından kullanılamamaktadır. Bu gibi topraklarda gerekli besin elementinin, özellikle mikro bitki besin elementlerinin yaprak gübresi şeklinde verilmesi bitkinin daha hızlı ve etkili şekilde faydalanmasını sağlamaktadır. Bu çalışmada, soya bitkisinin (Glycine max L.) farklı gelişim dönemlerinde (V3, R1, R3) yaprak gübresi şeklinde verilen çinko ve demir besin elementlerinin klorofil içeriği (SPAD), yaprak alan indeksi (LAI) ve soya bitkisinin kimyasal kompozisyonuna etkisi incelenmiştir. Deneme, 2018 ve 2019 yıllarında ikinci ürün olarak Amik Ovası (Hatay) koşullarında bölünen bölünmüş parseller deneme desenine göre üç yinelemeli olarak yürütülmüştür. Ana parsellere çeşitler (Arısoy, Bravo, Nazlıcan), alt parsellere gelişim dönemleri (V3, R1, R3) ve alt alt parsellere gübre uygulamaları (Kontrol, Çinko, Demir, Çinko + Demir) yerleştirilmiştir. Soya bitkisine farklı gelişim dönemlerinde uygulanan demir ve çinko yaprak gübreleri, kontrol grubuna göre SPAD ve LAI değerlerini artırmıştır. En yüksek klorofil içeriği (SPAD değeri) Nazlıcan x R3 x Zn + Fe (36.03) uygulamasından alınırken, en yüksek yaprak alan indeksi değeri ise Bravo x V3 x Fe (7.57) uygulamasından alınmıştır. Klorofil içeriği tespitinde (SPAD değerleri) generatif dönem ölçümlerinde yüksek sonuç alınırken, yaprak alan indeksi ölçümlerinde ise vejetatif dönem daha iyi sonuç vermiştir. Yaprak besin elementi içerikleri yönünden incelendiğinde ise generatif dönemde yapılan uygulamalar neticesinde çinko ve demir birikimleri daha fazla olmuştur. Sonuç olarak, kireçli topraklarda soya bitkisinin ihtiyacı olan mikro besin elementlerinin yaprak gübrelemesi ile karşılanabileceği görülmüştür.

Destekleyen Kurum

Hatay Mustafa Kemal Üniversitesi

Proje Numarası

17.D.001

Teşekkür

Yazarlar olarak Hatay Mustafa Kemal Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü’ne (HMKÜ BAP) finansal desteği (17.D.001) için; HMKÜ Teknoloji ve Ar-Ge Uygulama Merkezi’ne, Dr. Merve Olukman Şahin’e ve Öğr.Gör. Serbay Bucak’a besin elementi analizlerindeki katkıları için teşekkür ediyoruz.

Kaynakça

  • Anonim, (2021a). Food and Agriculture Data (FAO). http://www.fao.org/faostat/en/#data (Erişim tarihi: 22.06.2021)
  • Anonim, (2021b). Bitkisel Üretim İstatistikleri (TÜİK). https://biruni.tuik.gov.tr/medas/ (Erişim tarihi: 21.06.2021)
  • Bin, L.M., Weng, L., Bugster, M.H.J. (2016). Effectiveness of FeEDDHA, FeEDDHMA, and FeHBED in preventing iron-deficiency chlorosis in soybean. Journal of Agricultural and Food Chemistry, 64, 8273-8281.
  • Caliskan, S., Ozkaya, I., Caliskan, M.E., Arslan, M. (2008). The effects of nitrogen and iron fertilization on growth, yield and fertilizer use efficiency of soybean in a Mediterranean-type soil. Field Crops Research, 108: 126–132.
  • Chhonkar, A.K., Chandel, A.S. (1991). Effect of iron and molybdenum on nitrogenase activity and nitrogen fixation in soybean (Glycine max L.) grown in alluval soils of North India. Indian Journal of Agronomy, 36 (SUPPL): 124-128.
  • Ghasemian, V., Ghalavand, A., Soroosh Zadeh, A., Pirzad, A. (2010). The effect of iron, zinc and manganese on quality and quantity of soybean seed. Journal of Phytology, 2(11): 73-79.
  • Goos, R.J., Johnson, B.E. (2000). A comparison of three methods for reducing iron-deficiency chlorosis in soybean. Agronomy Journal, 92 (6): 1135-1139.
  • Heitholt, J.J., Sloan, J.J., MacKown, C.T., Cabrera, R.I. (2003). Soybean growth on calcareous soil as affected by three iron sources. Journal of Plant Nutrition, 26, 935-948.
  • Kahrariyan, B., Yeganehpoor, F., Beyginiya, V., Samadiyan, F. (2013). Effect of FE foliar application on morphological and physiological traits of different dryland wheat cultivars. International Journal of Advanced Biological and Biomedical Research, 1(12):1583-1589.
  • Kinaci, E., Gulmezoglu, N. (2007). Grain yield and yield components of triticale upon application of different foliar fertilizers. Interciencia, 32(9): 624-628.
  • Kobraee, S., Shamsi, K., Ekhtiari, S. (2011). Soybean nodulation and chlorophyll concentration (SPAD value) affected by some of micronutrients. Annals of Biological Research, 2(2): 414-422.
  • Ma, J.F., Ling, H-Q. (2009). Iron for plant and humans. Plant and Soil, 325: 1-3.
  • Marschner, P. (2012). Mineral Nutrition of Higher Plants. Academic Press. London, UK.
  • Öztürk, B., Zengin, M., Gökmen Yılmaz, F. (2020). Potasyum ve çinkolu gübrelemenin enginarda verim ve verim unsurlarına etkileri. Tekirdağ Ziraat Fakültesi Dergisi, 17(2): 180-190.
  • Pejuhan, J., Çomaklı, B. (2018). Kireçli topraklarda uygulanan demir, çinko ve bazı biyolojik gübrelerin yemlik soya (Glycine max.(L) Merril)’da verim ve bazı özelliklere etkileri. Alinteri Journal of Agriculture Sciences, 33(2):153-163.
  • Ramadan, A.A.E., El-Bassiouny, H.M.S., Bakry, B.A., Abdallah, M.M.S., El-Enany, M.A.M. (2020). Growth, yield and biochemical changes of soybean plant in response to iron and magnesium oxide nanoparticles. Pakistan Journal of Biological Sciences, 23: 406-417.
  • Roomizadeh, S., Karimian, N. (1996). Manganase-Iron Relationship in Soybean Grown in Calcareous Soils. Journal of Plant Nutrition, 19 (2): 397-406.
  • Rotaru, V., Sinclair, T.R. (2009). Influence of Plant Phosphorus and Iron Concentrations on Growth of Soybean. Journal of Plant Nutrition, 32:1513-1526.
  • Sawan, Z.M., Mahmoud, M.H., El-Guibali, A.H. (2008). Influence of potassium fertilization and foliar application of zinc and phosphorus on growth, yield components, yield and fiber properties of Egyptian cotton (Gossypium barbadense L.). Journal of Plant Ecology, 1 (4): 259-270.
  • Sheykhbaglou, R., Sedghi, M., Fathi-Achachlouie, B. (2018). The effect of ferrous nano-oxide particles on physiological traits and nutritional compounds of soybean (Glycine max L.) seed. Annals of the Brazilian Academy of Sciences, 90(1): 485-494.
  • Sohrabi, Y., Habibi, A., Mohammadi, K., Sohrabi, M., Heidari, G., Khalesro, S., Khalvandi, M. (2012). Effect of nitrogen (N) fertilizer and foliar-applied iron (Fe) fertilizer at various reproductive stages on yield, yield component and chemical composition of soybean (Glycine max L. Merr.) seed. African Journal of Biotechnology, 11(40): 9599-9605.
  • Şahin, C.B., İşler, N. (2021). Foliar applied zinc and iron effects on yield and yield components of soybean: Determination by PCA analysis. Communications in Soil Science and Plant Analysis, 52(3): 212-221.
  • Terry, R.E., Jolley, V.D. (1994). Nitrogenase activity is required for activation of iron stress response in iron inefficient T203 soybean. Journal of Plant Nutrition, 17: 1417-1428.
  • Unakıtan, G., Aydın, B. (2012). Türkiye’de soya üretiminin ekonometrik analizi. Tekirdağ Ziraat Fakültesi Dergisi, 9(1): 6-14.
  • Wasaya, A., Shabir, M.S., Hussain, M., Ansar, M., Aziz, A., Hassan, W., Ahmad, I. (2017). Foliar application of Zinc and Boron improved the productivity and net returns of maize grown under rainfed conditions of Pothwar plateau. Journal of Soil Science and Plant Nutrition, 17(1): 33-45.
  • Wiersma, J.V. (2005). High rates of Fe-EDDHA and seed iron concentration suggest partial solutions to iron deficiency in soybean. Agronomy Journal, 97: 924-934.
  • Yadavi, A., Aboueshaghi, R.S., Dehnavi, M.M., Balouchi, H. (2014). Effect of micronutrıents foliar application on grain qualitative characteristics and some physiological traits of bean (Phaseolus vulgaris L.) under drought stress. Indian Journal of Fundamental and Applied Life Sciences, 4: 124-131.
  • Zaheer, I.E., Ali, S., Saleem, M.H., Ali, M., Riaz, M., Javed, S., Sehar, A., Abbas, Z., Rizwan, M., El-Sheikh, M.A., Alyemeni, M.N. (2020). Interactive role of zinc and iron lysine on Spinacia oleracea L. growth, photosynthesis and antioxidant capacity irrigated with tannery wastewater. Physiology and Molecular Biology of Plants, 26: 2435-2452.
  • Zayed, B.A., Salem, A.K.M., El Sharkawy, H.M. (2011). Effect of different micronutrient treatments on rice (Oriza sativa L.) growth and yield under saline soil conditions. World Journal of Agricultural Sciences, 7(2): 179-184.

Effects of Foliar Fertilizer Applications on Leaf Area, Chlorophyll and Nutritional Content at Different Growth Stages of Soybean

Yıl 2022, Cilt: 19 Sayı: 4, 712 - 723, 23.12.2022
https://doi.org/10.33462/jotaf.963971

Öz

Plants need all plant nutrition elements to be available and adequate level in soil for optimum growth and yield production. The uptake of macro and micro nutrients by plants is limited or they can not be beneficial for plants in calcareous soils with high pH such as being in Mediterranean Region. In such situations, management strategies such as foliar spray can be useful to benefit of plants from them particularly under soil-limed condition with restricted micronutrients uptake. In this study, it was aimed to evaluate the effects of foliar-applied zinc and iron on chlorophyll content, leaf area index (LAI) and chemical composition of soybean (Glycine max L.) at different growth stages. Field experiments were conducted over during the second crop seasons of the years 2018 and 2019 under the conditions of Hatay Province. The experiment was designed as split-split plot design with three replications. Varieties (Arısoy, Bravo, Nazlıcan) were placed in main plots, growth stages (V3, R1, R3) in sub-plots and foliar fertilizers (control, zinc, iron, zinc + iron) in sub-sub-plots. Foliar application of iron and zinc increased chlorophyll content and LAI values at different stages of growth in contrast to control (untreated) groups. The highest SPAD value (36.03) was obtained from Nazlıcan x R3 x Zn + Fe treatment and the highest LAI (7.57) was obtained from Bravo x V3 x Fe treatment. Generally, the higher results of SPAD value were observed in reproductive stages while the higher results of LAI were observed in vegetative stages. Leaf zinc and iron accumulations were higher in reproductive stages. As a result of this study, it was observed that micro nutrients needed by soybean plant can be supplied with foliar applications in calcareous soils.

Proje Numarası

17.D.001

Kaynakça

  • Anonim, (2021a). Food and Agriculture Data (FAO). http://www.fao.org/faostat/en/#data (Erişim tarihi: 22.06.2021)
  • Anonim, (2021b). Bitkisel Üretim İstatistikleri (TÜİK). https://biruni.tuik.gov.tr/medas/ (Erişim tarihi: 21.06.2021)
  • Bin, L.M., Weng, L., Bugster, M.H.J. (2016). Effectiveness of FeEDDHA, FeEDDHMA, and FeHBED in preventing iron-deficiency chlorosis in soybean. Journal of Agricultural and Food Chemistry, 64, 8273-8281.
  • Caliskan, S., Ozkaya, I., Caliskan, M.E., Arslan, M. (2008). The effects of nitrogen and iron fertilization on growth, yield and fertilizer use efficiency of soybean in a Mediterranean-type soil. Field Crops Research, 108: 126–132.
  • Chhonkar, A.K., Chandel, A.S. (1991). Effect of iron and molybdenum on nitrogenase activity and nitrogen fixation in soybean (Glycine max L.) grown in alluval soils of North India. Indian Journal of Agronomy, 36 (SUPPL): 124-128.
  • Ghasemian, V., Ghalavand, A., Soroosh Zadeh, A., Pirzad, A. (2010). The effect of iron, zinc and manganese on quality and quantity of soybean seed. Journal of Phytology, 2(11): 73-79.
  • Goos, R.J., Johnson, B.E. (2000). A comparison of three methods for reducing iron-deficiency chlorosis in soybean. Agronomy Journal, 92 (6): 1135-1139.
  • Heitholt, J.J., Sloan, J.J., MacKown, C.T., Cabrera, R.I. (2003). Soybean growth on calcareous soil as affected by three iron sources. Journal of Plant Nutrition, 26, 935-948.
  • Kahrariyan, B., Yeganehpoor, F., Beyginiya, V., Samadiyan, F. (2013). Effect of FE foliar application on morphological and physiological traits of different dryland wheat cultivars. International Journal of Advanced Biological and Biomedical Research, 1(12):1583-1589.
  • Kinaci, E., Gulmezoglu, N. (2007). Grain yield and yield components of triticale upon application of different foliar fertilizers. Interciencia, 32(9): 624-628.
  • Kobraee, S., Shamsi, K., Ekhtiari, S. (2011). Soybean nodulation and chlorophyll concentration (SPAD value) affected by some of micronutrients. Annals of Biological Research, 2(2): 414-422.
  • Ma, J.F., Ling, H-Q. (2009). Iron for plant and humans. Plant and Soil, 325: 1-3.
  • Marschner, P. (2012). Mineral Nutrition of Higher Plants. Academic Press. London, UK.
  • Öztürk, B., Zengin, M., Gökmen Yılmaz, F. (2020). Potasyum ve çinkolu gübrelemenin enginarda verim ve verim unsurlarına etkileri. Tekirdağ Ziraat Fakültesi Dergisi, 17(2): 180-190.
  • Pejuhan, J., Çomaklı, B. (2018). Kireçli topraklarda uygulanan demir, çinko ve bazı biyolojik gübrelerin yemlik soya (Glycine max.(L) Merril)’da verim ve bazı özelliklere etkileri. Alinteri Journal of Agriculture Sciences, 33(2):153-163.
  • Ramadan, A.A.E., El-Bassiouny, H.M.S., Bakry, B.A., Abdallah, M.M.S., El-Enany, M.A.M. (2020). Growth, yield and biochemical changes of soybean plant in response to iron and magnesium oxide nanoparticles. Pakistan Journal of Biological Sciences, 23: 406-417.
  • Roomizadeh, S., Karimian, N. (1996). Manganase-Iron Relationship in Soybean Grown in Calcareous Soils. Journal of Plant Nutrition, 19 (2): 397-406.
  • Rotaru, V., Sinclair, T.R. (2009). Influence of Plant Phosphorus and Iron Concentrations on Growth of Soybean. Journal of Plant Nutrition, 32:1513-1526.
  • Sawan, Z.M., Mahmoud, M.H., El-Guibali, A.H. (2008). Influence of potassium fertilization and foliar application of zinc and phosphorus on growth, yield components, yield and fiber properties of Egyptian cotton (Gossypium barbadense L.). Journal of Plant Ecology, 1 (4): 259-270.
  • Sheykhbaglou, R., Sedghi, M., Fathi-Achachlouie, B. (2018). The effect of ferrous nano-oxide particles on physiological traits and nutritional compounds of soybean (Glycine max L.) seed. Annals of the Brazilian Academy of Sciences, 90(1): 485-494.
  • Sohrabi, Y., Habibi, A., Mohammadi, K., Sohrabi, M., Heidari, G., Khalesro, S., Khalvandi, M. (2012). Effect of nitrogen (N) fertilizer and foliar-applied iron (Fe) fertilizer at various reproductive stages on yield, yield component and chemical composition of soybean (Glycine max L. Merr.) seed. African Journal of Biotechnology, 11(40): 9599-9605.
  • Şahin, C.B., İşler, N. (2021). Foliar applied zinc and iron effects on yield and yield components of soybean: Determination by PCA analysis. Communications in Soil Science and Plant Analysis, 52(3): 212-221.
  • Terry, R.E., Jolley, V.D. (1994). Nitrogenase activity is required for activation of iron stress response in iron inefficient T203 soybean. Journal of Plant Nutrition, 17: 1417-1428.
  • Unakıtan, G., Aydın, B. (2012). Türkiye’de soya üretiminin ekonometrik analizi. Tekirdağ Ziraat Fakültesi Dergisi, 9(1): 6-14.
  • Wasaya, A., Shabir, M.S., Hussain, M., Ansar, M., Aziz, A., Hassan, W., Ahmad, I. (2017). Foliar application of Zinc and Boron improved the productivity and net returns of maize grown under rainfed conditions of Pothwar plateau. Journal of Soil Science and Plant Nutrition, 17(1): 33-45.
  • Wiersma, J.V. (2005). High rates of Fe-EDDHA and seed iron concentration suggest partial solutions to iron deficiency in soybean. Agronomy Journal, 97: 924-934.
  • Yadavi, A., Aboueshaghi, R.S., Dehnavi, M.M., Balouchi, H. (2014). Effect of micronutrıents foliar application on grain qualitative characteristics and some physiological traits of bean (Phaseolus vulgaris L.) under drought stress. Indian Journal of Fundamental and Applied Life Sciences, 4: 124-131.
  • Zaheer, I.E., Ali, S., Saleem, M.H., Ali, M., Riaz, M., Javed, S., Sehar, A., Abbas, Z., Rizwan, M., El-Sheikh, M.A., Alyemeni, M.N. (2020). Interactive role of zinc and iron lysine on Spinacia oleracea L. growth, photosynthesis and antioxidant capacity irrigated with tannery wastewater. Physiology and Molecular Biology of Plants, 26: 2435-2452.
  • Zayed, B.A., Salem, A.K.M., El Sharkawy, H.M. (2011). Effect of different micronutrient treatments on rice (Oriza sativa L.) growth and yield under saline soil conditions. World Journal of Agricultural Sciences, 7(2): 179-184.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Cenk Burak Şahin 0000-0001-6270-8184

Necmi İşler 0000-0001-5877-7830

Proje Numarası 17.D.001
Yayımlanma Tarihi 23 Aralık 2022
Gönderilme Tarihi 7 Temmuz 2021
Kabul Tarihi 5 Ekim 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 19 Sayı: 4

Kaynak Göster

APA Şahin, C. B., & İşler, N. (2022). Soyanın Farklı Gelişim Dönemlerinde Uygulanan Yaprak Gübresinin Yaprak Alanı, Klorofil ve Besin İçeriklerine Etkisi. Tekirdağ Ziraat Fakültesi Dergisi, 19(4), 712-723. https://doi.org/10.33462/jotaf.963971
AMA Şahin CB, İşler N. Soyanın Farklı Gelişim Dönemlerinde Uygulanan Yaprak Gübresinin Yaprak Alanı, Klorofil ve Besin İçeriklerine Etkisi. JOTAF. Aralık 2022;19(4):712-723. doi:10.33462/jotaf.963971
Chicago Şahin, Cenk Burak, ve Necmi İşler. “Soyanın Farklı Gelişim Dönemlerinde Uygulanan Yaprak Gübresinin Yaprak Alanı, Klorofil Ve Besin İçeriklerine Etkisi”. Tekirdağ Ziraat Fakültesi Dergisi 19, sy. 4 (Aralık 2022): 712-23. https://doi.org/10.33462/jotaf.963971.
EndNote Şahin CB, İşler N (01 Aralık 2022) Soyanın Farklı Gelişim Dönemlerinde Uygulanan Yaprak Gübresinin Yaprak Alanı, Klorofil ve Besin İçeriklerine Etkisi. Tekirdağ Ziraat Fakültesi Dergisi 19 4 712–723.
IEEE C. B. Şahin ve N. İşler, “Soyanın Farklı Gelişim Dönemlerinde Uygulanan Yaprak Gübresinin Yaprak Alanı, Klorofil ve Besin İçeriklerine Etkisi”, JOTAF, c. 19, sy. 4, ss. 712–723, 2022, doi: 10.33462/jotaf.963971.
ISNAD Şahin, Cenk Burak - İşler, Necmi. “Soyanın Farklı Gelişim Dönemlerinde Uygulanan Yaprak Gübresinin Yaprak Alanı, Klorofil Ve Besin İçeriklerine Etkisi”. Tekirdağ Ziraat Fakültesi Dergisi 19/4 (Aralık 2022), 712-723. https://doi.org/10.33462/jotaf.963971.
JAMA Şahin CB, İşler N. Soyanın Farklı Gelişim Dönemlerinde Uygulanan Yaprak Gübresinin Yaprak Alanı, Klorofil ve Besin İçeriklerine Etkisi. JOTAF. 2022;19:712–723.
MLA Şahin, Cenk Burak ve Necmi İşler. “Soyanın Farklı Gelişim Dönemlerinde Uygulanan Yaprak Gübresinin Yaprak Alanı, Klorofil Ve Besin İçeriklerine Etkisi”. Tekirdağ Ziraat Fakültesi Dergisi, c. 19, sy. 4, 2022, ss. 712-23, doi:10.33462/jotaf.963971.
Vancouver Şahin CB, İşler N. Soyanın Farklı Gelişim Dönemlerinde Uygulanan Yaprak Gübresinin Yaprak Alanı, Klorofil ve Besin İçeriklerine Etkisi. JOTAF. 2022;19(4):712-23.