BibTex RIS Cite

MISCIBILITY AND THERMAL DEGRADATION KINETICS OF POLY-β-ALANINE/POLY(3-HYDROXYPROPIONATE) BLENDS

Year 2017, Volume: 4 Issue: 1, 341 - 354, 09.01.2017
https://doi.org/10.18596/jotcsa.287333

Abstract

Poly-β-alanine (PBA) and poly(3-hidroxypropionate) (PHP) were synthesized via base-catalyzed hydrogen transfer polymerization (HTP) of acrylamide and acrylic acid, respectively. Blends of PBA/PHP with different composition (PHP content, 5% to 75%) were studied using FTIR, DSC, TGA, XRD and polarized optical microscope to reveal both miscibility and thermal degradation kinetics of PBA/PHP blends.  Optical images of blends were transparent and entirely uniform. Characteristic IR bands of both components shifted in higher frequencies with increasing fraction of other component.  Melting temperature (Tm), thermal decomposition temperatures (Td) and enthalpy of fusion (ΔHf) of PHP decreased with increasing PBA fraction in blends. Thermal degradation kinetics of both components were studied by Freeman-Carroll method. Activation energies of thermal degradations of blend components were determined with a good regression coefficients (at least 0.994). Activation energies of decomposition decreased from 224.14 to 86.125 kJmol-1 with increasing PHP content. XRD spectra of blends exhibited lower peak intensities than those of neat polymers. The spectroscopic, thermal and optic methods revealed that PBA and PHP were miscible with a good compatibility in amorphous phase.

References

  • Furuhashi Y, Iwata T, Kimura Y, Doi Y. Structural characterization and enzymatic degradation of α-, β-, and -crystalline forms for poly(β-propiolactone). Macromol. Biosci. 2003; 3:462–470. DOI: 10.1002/mabi.200350020.
  • Cortizo M S, Molinuevo M S, Cortizo A M. Biocompatibility and biodegradation of polyester and polyfumarate based-scaffolds for bone tissue engineering. J. Tissue. Eng. Regen. Med. 2008; 2:33–42. DOI: 10.1002/term.62.
  • Cortizo M S, Alessandrini J L, Etcheverr S B, Cortizo A M. A vanadium/aspirin complex controlled release using a poly(beta-propiolactone) film. Effects on osteosarcoma cells. J. Biomater. Sci. Polym. Ed. 2001;12: 945-959. DOI: 10.1163/156856201753252499.
  • Cao A, Asakawa N, Yoshie N, Inoue Y. Phase structure and biodegradation of the Bacterial poly(3-hydroxybutyric acid)/chemosynthetic poly(3-hydroxypropionic acid) blend. Polym. J. 1998;30:743-752. DOI:0.1295/polymj.30.743.
  • He Y, Asakawa N, Inoue Y. Biodegradable blends of high molecular weight poly(ethylene oxide) with poly(3-hydroxypropionic acid) and poly(3-hydroxybutyric acid) a miscibility study by DSC, DMTA and NMR spectroscopy. Polym. Int. 2000; 49:609–617. DOI: 10.1002/1097-0126(200006)49:6<609::AID-PI426>3.0.CO;2-6.
  • Kumagai Y, Doi Y. Enzymatic degradation of binary blends of microbial poly(3-hydroxybutyrate) with enzymatically active polymers. Polym. Degrad. Stabil. 1992;37: 253-256. DOI:10.1016/0141-3910(92)90167-4.
  • Autran J P M. US Patent 7,265,188 B2 Sept 4 2007 assigned to The Procter&Gamble Company. https://www.google.com/patents/US7265188
  • Ichikawa M, Nakamura K, Yoshie N, Asakawa N, Inoue Y. Morphological study of bacterial poly(3-hydroxybutyrateco-3-hydroxypropionate). Macromol. Chem. Phys. 1996;197: 2467-2480. DOI: 10.1002/macp.1996.021970811.
  • Cerrai P, Tricoli M, Andruzzi F. Synthesis and characterization of polymers from β-propiolactone and poly(ethylene glycol)s. Polymer 1987; 28:831-836. DOI:10.1016/0032-3861(87)90236-9.
  • Zhou Q, Shi Z Y, Meng D C, Wu Q, Chen J C, Chen G Q. Production of 3-hydroxypropionate homopolymer and poly(3-hydroxypropionate-co-4-hydroxybutyrate) copolymer by recombinant Escherichia coli. Metab. Eng. 2011;13:777–785. DOI: 10.1016/j.ymben.2011.10.002.
  • Andreeßen B, Steinbüchel A. Biosynthesis and Biodegradationof 3-Hydroxypropionate-Containing Polyesters. Appl. Environ. Microbiol. 2010;76:4919-4925. DOI: 10.1128/AEM.01015-10.
  • Camino G, Guaita M. A DTA Study of Crystallization on Heating of Branched Poly(imino(1-oxotrimethylene)), Nylon3. Euro. Polym. J. 1977;13:903-905. DOI:10.1016/0014-3057(77)90063-5.
  • Masamoto J. Nylon-3. Rep. Prog. Polym. Phys. Jpn. 2000;43:867-876.
  • Yamamoto F, Misumi T. US Pat. 5,015,707, (1991) assigned to Asahi Chemical. http://www.google.com/patents/US5015707
  • He Y, Zhu B, Inoue Y. Hydrogen-Bonds in Polymer Blends. Prog. Polym. Sci. 2004;29:1021-1051. DOI:10.1016/j.progpolymsci.2004.07.002.
  • Zakaria Z, Izzah Z, Jawaid M, Hassan A. Effect of degree of deacetylation of Chitosan on thermal stability and compatibility of Chitosan-polyamide blends. Bioresources. 2012;7:5568-5580. https://www.ncsu.edu/bioresources/BioRes_07/BioRes_07_4_5568_Zainoha_THJ_Deacetylation_Chitosan_Thermal_Stab_Amide_3078.pdf
  • Liu Y, Shao Z, Zhou P, Chen X. Thermal and crystalline behavior of silk fibroin/nylon 66 blend films. Polymer. 2004; 45:7705- 7710. DOI: 10.1016/j.polymer.2004.09.005.
  • Mousavioun P, Doherty W O S, George G. Thermal stability and miscibility of poly(hydroxybutyrate) and soda lignin blends. Ind. Crop. Prod. 2010; 32:656-661. DOI:10.1016/j.indcrop.2010.08.001.
  • Watanabe M, Togo M, Sanui K, Ogata N, Kobayashi T, Ohtaki Z. Ionic conductivity of polymer complexes formed by poly(β-propiolactone) and lithium perchlorate. Macromolecules. 1984;17:2908-2912. DOI: 10.1021/ma00142a079.
  • Guirguis O W, Moselhey M T H. Thermal and structural studies of poly(vinyl alcohol) and hydroxypropyl cellulose blends. Nat. Sci. 2012;4:57-67. DOI: 10.4236/ns.2012.41009.
  • Shamshad Ahmed A A, Basfar M M. Comparison of thermal stability of sulfur, peroxide and radiation cured NBR and SBR vulcanizates, Polym. Degrad.Stab.2000;67:319-323. http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/31/016/3
  • pdf
  • Freeman E S, Carroll B. J. Phys. Chem. 1958; 62:394-397.
  • Jerez A A. Modification to the Freeman and Carroll Method for the analysis of the kinetics of non-isothermel processes, J. Therm. Analysis. 1983; 26:315-318. E. DOI: 10.1007/BF01913218 S.
  • Aouachria K, Quintard G, Nageotte V M, Bensemra N B. The Effect of Di-(- 2-ethyl hexyl) phthalate (DEHP) as Plasticizer on the Thermal and Mechanical Properties of PVC/PMMA Blends, Polímeros, 2014; 24:428-433, 2014. http://dx.doi.org/10.1590/0104-1428.1588.
Year 2017, Volume: 4 Issue: 1, 341 - 354, 09.01.2017
https://doi.org/10.18596/jotcsa.287333

Abstract

References

  • Furuhashi Y, Iwata T, Kimura Y, Doi Y. Structural characterization and enzymatic degradation of α-, β-, and -crystalline forms for poly(β-propiolactone). Macromol. Biosci. 2003; 3:462–470. DOI: 10.1002/mabi.200350020.
  • Cortizo M S, Molinuevo M S, Cortizo A M. Biocompatibility and biodegradation of polyester and polyfumarate based-scaffolds for bone tissue engineering. J. Tissue. Eng. Regen. Med. 2008; 2:33–42. DOI: 10.1002/term.62.
  • Cortizo M S, Alessandrini J L, Etcheverr S B, Cortizo A M. A vanadium/aspirin complex controlled release using a poly(beta-propiolactone) film. Effects on osteosarcoma cells. J. Biomater. Sci. Polym. Ed. 2001;12: 945-959. DOI: 10.1163/156856201753252499.
  • Cao A, Asakawa N, Yoshie N, Inoue Y. Phase structure and biodegradation of the Bacterial poly(3-hydroxybutyric acid)/chemosynthetic poly(3-hydroxypropionic acid) blend. Polym. J. 1998;30:743-752. DOI:0.1295/polymj.30.743.
  • He Y, Asakawa N, Inoue Y. Biodegradable blends of high molecular weight poly(ethylene oxide) with poly(3-hydroxypropionic acid) and poly(3-hydroxybutyric acid) a miscibility study by DSC, DMTA and NMR spectroscopy. Polym. Int. 2000; 49:609–617. DOI: 10.1002/1097-0126(200006)49:6<609::AID-PI426>3.0.CO;2-6.
  • Kumagai Y, Doi Y. Enzymatic degradation of binary blends of microbial poly(3-hydroxybutyrate) with enzymatically active polymers. Polym. Degrad. Stabil. 1992;37: 253-256. DOI:10.1016/0141-3910(92)90167-4.
  • Autran J P M. US Patent 7,265,188 B2 Sept 4 2007 assigned to The Procter&Gamble Company. https://www.google.com/patents/US7265188
  • Ichikawa M, Nakamura K, Yoshie N, Asakawa N, Inoue Y. Morphological study of bacterial poly(3-hydroxybutyrateco-3-hydroxypropionate). Macromol. Chem. Phys. 1996;197: 2467-2480. DOI: 10.1002/macp.1996.021970811.
  • Cerrai P, Tricoli M, Andruzzi F. Synthesis and characterization of polymers from β-propiolactone and poly(ethylene glycol)s. Polymer 1987; 28:831-836. DOI:10.1016/0032-3861(87)90236-9.
  • Zhou Q, Shi Z Y, Meng D C, Wu Q, Chen J C, Chen G Q. Production of 3-hydroxypropionate homopolymer and poly(3-hydroxypropionate-co-4-hydroxybutyrate) copolymer by recombinant Escherichia coli. Metab. Eng. 2011;13:777–785. DOI: 10.1016/j.ymben.2011.10.002.
  • Andreeßen B, Steinbüchel A. Biosynthesis and Biodegradationof 3-Hydroxypropionate-Containing Polyesters. Appl. Environ. Microbiol. 2010;76:4919-4925. DOI: 10.1128/AEM.01015-10.
  • Camino G, Guaita M. A DTA Study of Crystallization on Heating of Branched Poly(imino(1-oxotrimethylene)), Nylon3. Euro. Polym. J. 1977;13:903-905. DOI:10.1016/0014-3057(77)90063-5.
  • Masamoto J. Nylon-3. Rep. Prog. Polym. Phys. Jpn. 2000;43:867-876.
  • Yamamoto F, Misumi T. US Pat. 5,015,707, (1991) assigned to Asahi Chemical. http://www.google.com/patents/US5015707
  • He Y, Zhu B, Inoue Y. Hydrogen-Bonds in Polymer Blends. Prog. Polym. Sci. 2004;29:1021-1051. DOI:10.1016/j.progpolymsci.2004.07.002.
  • Zakaria Z, Izzah Z, Jawaid M, Hassan A. Effect of degree of deacetylation of Chitosan on thermal stability and compatibility of Chitosan-polyamide blends. Bioresources. 2012;7:5568-5580. https://www.ncsu.edu/bioresources/BioRes_07/BioRes_07_4_5568_Zainoha_THJ_Deacetylation_Chitosan_Thermal_Stab_Amide_3078.pdf
  • Liu Y, Shao Z, Zhou P, Chen X. Thermal and crystalline behavior of silk fibroin/nylon 66 blend films. Polymer. 2004; 45:7705- 7710. DOI: 10.1016/j.polymer.2004.09.005.
  • Mousavioun P, Doherty W O S, George G. Thermal stability and miscibility of poly(hydroxybutyrate) and soda lignin blends. Ind. Crop. Prod. 2010; 32:656-661. DOI:10.1016/j.indcrop.2010.08.001.
  • Watanabe M, Togo M, Sanui K, Ogata N, Kobayashi T, Ohtaki Z. Ionic conductivity of polymer complexes formed by poly(β-propiolactone) and lithium perchlorate. Macromolecules. 1984;17:2908-2912. DOI: 10.1021/ma00142a079.
  • Guirguis O W, Moselhey M T H. Thermal and structural studies of poly(vinyl alcohol) and hydroxypropyl cellulose blends. Nat. Sci. 2012;4:57-67. DOI: 10.4236/ns.2012.41009.
  • Shamshad Ahmed A A, Basfar M M. Comparison of thermal stability of sulfur, peroxide and radiation cured NBR and SBR vulcanizates, Polym. Degrad.Stab.2000;67:319-323. http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/31/016/3
  • pdf
  • Freeman E S, Carroll B. J. Phys. Chem. 1958; 62:394-397.
  • Jerez A A. Modification to the Freeman and Carroll Method for the analysis of the kinetics of non-isothermel processes, J. Therm. Analysis. 1983; 26:315-318. E. DOI: 10.1007/BF01913218 S.
  • Aouachria K, Quintard G, Nageotte V M, Bensemra N B. The Effect of Di-(- 2-ethyl hexyl) phthalate (DEHP) as Plasticizer on the Thermal and Mechanical Properties of PVC/PMMA Blends, Polímeros, 2014; 24:428-433, 2014. http://dx.doi.org/10.1590/0104-1428.1588.
There are 25 citations in total.

Details

Journal Section Articles
Authors

Efkan Catıker This is me

Satılmış Basan

Publication Date January 9, 2017
Submission Date July 14, 2016
Published in Issue Year 2017 Volume: 4 Issue: 1

Cite

Vancouver Catıker E, Basan S. MISCIBILITY AND THERMAL DEGRADATION KINETICS OF POLY-β-ALANINE/POLY(3-HYDROXYPROPIONATE) BLENDS. JOTCSA. 2017;4(1):341-54.