Research Article
BibTex RIS Cite

Li+ doped chitosan-based solid polymer electrolyte incorporated with PEDOT:PSS for electrochromic device

Year 2018, Volume: 5 Issue: 3, 1413 - 1422, 01.09.2018
https://doi.org/10.18596/jotcsa.433901

Abstract

In this study, solid polymer electrolyte (SPE)
based on chitosan (Ch) was prepared with addition of
poly(3,4-ethylenedioxythiophene):polystyrene
sulfonate (PEDOT:PSS)
, lithium trifluro methane sulfonate (LiTRIF),  propylene carbonate (PC) by solvent casting
technique. The chitosan-based polymer electrolyte was characterized using electrochemical impedance spectroscopy
(EIS). The ionic
conductivity value was calculated as 4.2 x 10-4 S/cm. The SPE having
good ionic conductivity was used to fabricate electrochromic device with
glass/ITO/WO3
׀PEDOT:PSS-Ch-LiTRIF-PC׀ITO/glass whose
performance was evaluated via cyclic voltammetry, transmittance, repeating
chronoamperometry. The optical contrast of ECD was attained as 22% at 800 nm,
which resulting in coloration efficiency of 67 cm2/C.
The ECD displays fast
response time for coloration (tc ) is 0.29 s. Upon reversal of
potential bleaching (tb ) forms within 3 s.
The findings
demonstrated that this SPE electrolyte has promising candidate for use in
optoelectronic applications. 

References

  • 1. Alves R, Sentanin F, Sabadini RC, Pawlicka A, Silva MM. Green polymer electrolytes of chitosan doped with erbium triflate. Journal of Non-Crystalline Solids. 2018;482:183–191.
  • 2. Eren E, Karaca GY, Koc U, Oksuz L, Oksuz AU. Electrochromic characteristics of radio frequency plasma sputtered WO3 thin films onto flexible polyethylene terephthalate substrates. Thin Solid Films. 2017; 634: 40–50.
  • 3. Alves R, Sentanin F, Sabadini RC, Pawlicka A, Silva MM. Solid polymer electrolytes based on chitosan and Dy(CF3SO3)3 for electrochromic devices. Solid State Ionics. 2017; 310:112–120.
  • 4. Wang W, Guan S, Li M, Zheng J, Xu C. A novel hybrid quasi-solid polymer electrolyte based on porous PVB and modified PEG for electrochromic application. Organic Electronics.2018; 56:268–275.
  • 5. Thakur VK, Ding G, Ma J, Lee PS, Lu X. Hybrid materials and polymer electrolytes for electrochromic device applications. Adv. Mater. 2012;24:4071–4096.
  • 6. Alves R, Sentanin F, Sabadini RC, Fernandes M, Zea Bermudez Vd, Pawlicka A, Silva MM. Samarium (III) triflate-doped chitosan electrolyte for solid state electrochromic devices. Electrochimica Acta. 2018; 267: 51-62.
  • 7. Ataalla M, Afify AS, Hassan M, Abdallah M, Milanova M, Aboul-Enein HYA, Mohamed A. Tungsten-based glasses for photochromic, electrochromic, gas sensors, and related applications: A review. Journal of Non-Crystalline Solids. 2018; 491: 43–54.
  • 8. Patel GB, Singh NL, Singh F. Modification of chitosan-based biodegradable polymer by irradiation with MeV ions for electrolyte applications. Materials Science & Engineering B. 2017;225: 150–159.
  • 9. Eren E, Aslan E, Oksuz AU. The Effect of Anionic Surfactant on the Properties of Polythiophene/Chitosan Composites. Polymer Engineering and Science. 2014; 54(11):2632-2640.
  • 10. Aziz SB, Abidin ZHZ, Arof AK. Influence of silver ion reduction on electrical modulus parameters of solid polymer electrolyte based on chitosan silver triflate electrolyte membrane. eXPRESS Polymer Letters. 2010; 4(5):300–310.
  • 11. Arof AK, Osman Z, Morni NM, Kamarulzaman N, Ibrahim Z A, Muhamad M R, Chitosan-based electrolyte for secondary lithium cells. Journal of Materials Science. 2001; 36 : 791– 793.
  • 12. Leones R, Reis PM, Sabadini RC, Ravaro LP, Silva IDA, Camargo ASS de, Donosco JP, Magon CJ, Esperança JMSS, Pawlicka A, Silva MM. A luminescent europium ionic liquid to improve the performance of chitosan polymer electrolytes. Electrochimica Acta. 2017; 240 : 474–485.
  • 13. Alves R, Sabadini RC, Silva DA, Donoso JP, Magon CJ, Pawlicka A, Silva MM, Binary Ce(III) and Li(I) triflate salt composition for solid polymer electrolytes. Ionics. 2018; 24:2321–2334.
  • 14. Majid SR, Arof AK, Electrical behavior of proton-conducting chitosan-phosphoric acid-based electrolytes. Physica B. 2007; 390: 209–215.
  • 15. Cifarelli A, Parisini A, Berzina T, Iannotta S, Organic memristive element with Chitosan as solid polyelectrolyte. Microelectronic Engineering. 2018; 193: 65–70.
  • 16. Chávez E L, Oviedo-Roa R, Contreras-Pérez G, Martínez-Magadán JM, Castillo-Alvarado FL, Theoretical studies of ionic conductivity of crosslinked chitosan membranes.International Journal of hydrogen energy. 2010; 3 5: 12141-12146.
  • 17. Alves R, Sentanin F, Sabadini RC, Pawlicka A, Silva MM. Influence of cerium triflate and glycerol on electrochemical performance of chitosan electrolytes for electrochromic devices. Electrochimica Acta. 2016; 217: 108–116.
  • 18. Eren E, Karaca GY, Alver C, Oksuz AU. Fast electrochromic response for RF-magnetron sputtered electrospun V2O5 mat. European Polymer Journal. 2016; 84: 345–354.
  • 19. Zhang R, Xu X, Fan X, Yang R, Wu T, Zhang C. Application of conducting micelles self-assembled from commercial poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) and chitosan for electrochemical biosensor. Colloid and Polymer Science. 2018; 296:495–502.
  • 20. Poongodi S, Kumar PS, Mangalaraj D, Ponpandian N, Meena P, Masuda Y, Lee C. Electrodeposition of WO3 nanostructured thin films for electrochromic and H2S gas sensor applications. Journal of Alloys and Compounds. 2017; 719:71-81.
  • 21. Tang Q, Li H, Yue Y, Zhang Q, Wang H, Li Y, Chen P, 1-Ethyl-3-methylimidazolium tetrafluoroborate-doped high ionic conductivity gel electrolytes with reduced anodic reaction potentials for electrochromic devices. Materials and Design. 2017; 118: 279–285.
  • 22. Deka J R, Saikia D, Lou G-W, Lin C-H, Fang J, Yang Y-C, Kao H-M, Design, synthesis and characterization of polysiloxane and polyetherdiamine based comb-shaped hybrid solid polymer electrolytes for applications in electrochemical devices. Materials and Design. 2017; 118: 279–285.
  • 23. Puguan J M C, Boton L B, Kim H, Triazole-based ionene exhibiting tunable structure and ionic conductivity obtained via cycloaddition reaction: A new polyelectrolyte for electrochromic devices. Solar Energy Materials and Solar Cells. 2018; 18: 210–218.
  • 24. Ramanavicius A, Genys P, Ramanaviciene A, Electrochemical Impedance Spectroscopy Based Evaluation of 1,10-Phenanthroline-5,6-dione and Glucose Oxidase Modified Graphite Electrode. Electrochimica Acta. 2014; 146: 659–665.
  • 25. Wang J-Y, Wang M-C, Jan D-J. Synthesis of poly(methyl methacrylate)-succinonitrile composite polymer electrolyte and its application for flexible electrochromic devices. Solar Energy Materials & Solar Cells.2017; 160: 476–483.
  • 26. Virbukas D, Sriubas M, Laukaitis G. Structural and electrical study of samarium doped cerium oxide thin films prepared by e-beam evaporation. Solid State Ionics. 2015; 271: 98–102.
  • 27. Leones R, Sabadini R C, Esperança J M S S, Pawlicka A, Silva MM, Effect of storage time on the ionic conductivity of chitosan-solid polymer electrolytes incorporating cyano-based ionic liquids. Electrochimica Acta. 2017;232:22–29.
  • 28. Ge Q., Zhou L., Lian Y.-M., Zhang X., Chen R., Yang W., Metal-phosphide-doped Li7P3S11 glass-ceramic electrolyte with high ionic conductivity for all-solid-state lithium-sulfur batteries. Electrochemistry Communications. 2018; 97: 100–104.
  • 29. Kim H., Kim Y.-II, Partial nitridation of Li4SiO4 and ionic conductivity of Li4.1SiO3.9N0.1. Ceramics International. 2018; 44 : 9058–9062.
  • 30. Liu H-M, Saikia D, Wu C-G, Fang J, Kao H-M, Solid polymer electrolytes based on coupling of polyetheramine and organosilane for applications in electrochromic devices. Solid State Ionics . 2017; 303:144–153.
  • 31. Zhu Y, Otley M T, Alamer F A, Kumar A, Zhang X, Mamangun D M D, Li M, Arden B G, Sotzing G A, Electrochromic properties as a function of electrolyte on the performance of electrochromic devices consisting of a single-layer polymer. Organic Electronics. 2014; 15 : 1378–1386.
  • 32. Andrade JR, Raphael E, Pawlicka A. Plasticized pectin-based gel electrolytes. Electrochimica Acta. 2009; 54: 6479–6483.
  • 33. Ledwon P, Andrade JR, Lapkowski M, Pawlicka A. Hydroxypropyl cellulose-based gel electrolyte for electrochromic devices. Electrochimica Acta. 2015; 159:227-233.
  • 34. Liu S, Wang W. Improved electrochromic performances of WO3-based thin films via addition of CNTs. J Sol-Gel Sci Technol. 2016; 80:480–486.
  • 35. Rocha MD, He Y, Diao X, Rougier A. Influence of cycling temperature on the electrochromic properties of WO3/NiO devices built with various thicknesses. Solar Energy Materials and Solar Cells. 2018; 177: 57–65.
  • 36. Ling H, Liu L, Lee PS, Mandler D, Lu X. Layer-by-Layer Assembly of PEDOT:PSS and WO3 Nanoparticles: Enhanced Electrochromic Coloration Efficiency and Mechanism Studies by Scanning Electrochemical Microscopy. Electrochimica Acta. 2015; 174:57–65.
  • 37. Kadam LD, Patil PS. Studies on electrochromic properties of nickel oxide thin films prepared by spray pyrolysis technique. Solar Energy Materials & Solar Cells. 2001; 69:361-369.
  • 38. Chang-Jian C-W, Cho E-C, Yen S-C, Ho B-C, Lee K-C, Huang J-H, Hsiao Y-S. Facile preparation of WO3/PEDOT:PSS composite for inkjet printed electrochromic window and its performance for heat shielding. Dyes and Pigments. 2018; 148:465-473.
  • 39. Zhang S, Sun G, He Y, Fu R, Gu Y, Chen S. Preparation, Characterization, and Electrochromic Properties of Nanocellulose-Based Polyaniline Nanocomposite Films. ACS Appl. Mater. Interfaces 2017, 9, 16426−16434.
  • 40. Kalagi S S, Dalavi D S, Mali S S, Inamdar A I, Patil R S, Patil P S, Study of Novel WO3-PEDOT:PSS Bilayered Thin Film for Electrochromic Applications. Nanoscience and Nanotechnology Letters. 2012;4:1146-1154.
  • 41. Patil DS, Pawar SA, Hwang J, Kim JH, Patil PS, Shşn JC. Silver incorporated PEDOT: PSS for enhanced electrochemical performance. Journal of Industrial and Engineering Chemistry. 2016;42: 113–120.
  • 42. Kawahara J, Ersman PA, Engquist I, Berggren M. Improving the color switch contrast in PEDOT:PSS-based electrochromic displays. Organic Electronics. 2012; 13 :469–474.
  • 43. Assis LMN, Leones R, Kanicki J, Pawlicka A, Silva MM. Prussian blue for electrochromic devices. Journal of Electroanalytical Chemistry. 2016. 777:33–39.
  • 44. Eren E, Alver C, Karaca GY, Uygun E, Oksuz AU. Enhanced electrochromic performance of WO3 hybrids using polymer plasma hybridization process. Synthetic Metals. 2018; 235: 115–124.
  • 45. Firat YE, Peksoz A, Efficiency enhancement of electrochromic performance in NiO thin film via Cu doping for energy-saving potential. Electrochimica Acta. 2019; 295:645-654. 46. Chen X, Yang M, Qu Q, Zhao Q, Zou W. A regiosymmetric blue-to-transmissive electrochromic polymer based on 3,4-ethylenedioxythiophene with bromomethyl pendant groups. Journal of Electroanalytical Chemistry. 2018; 820 : 60–66.
  • 47. Bathe RB, Patil PS. Electrochromic characteristics of fibrous reticulated WO3 thin films prepared by pulsed spray pyrolysis technique. Solar Energy Materials & Solar Cells. 2007; 91: 1097–1101.
  • 48. Kiristi M, Bozduman F, Oksuz AU, Oksuz L, Hala A. Solid State Electrochromic Devices of Plasma Modified WO3 Hybrids. Ind. Eng. Chem. Res. 2014; 53: 15917−15922.
  • 49. Fernandes M, Freitas VT, Pereira S, Fortunato E, Ferreira RAS, Carlos LD, Rego R, Bermudez VdZ. Green Li+-and Er3+-doped poly(ε-caprolactone)/siloxanebiohybrid electrolytes for smart electrochromic windows. Solar Energy Materials & Solar Cells 2014; 123: 203–210.
  • 50. Dulgerbaki C, Oksuz AU. Fabricating polypyrrole/tungsten oxide hybrid based electrochromic devices using different ionic liquids. Polym. Adv. Technol. 2016;27: 73–81.
  • 51. Santos GH, Gavim AAX, Silva RF, Rodrigues PC, Kamikawachi RC, Deus JFd, Macedo AG. Roll-to-roll processed PEDOT:PSS thin films: application in flexible electrochromic devices. J Mater Sci: Mater Electron.2016; 27(10) 11072-11079.
Year 2018, Volume: 5 Issue: 3, 1413 - 1422, 01.09.2018
https://doi.org/10.18596/jotcsa.433901

Abstract

References

  • 1. Alves R, Sentanin F, Sabadini RC, Pawlicka A, Silva MM. Green polymer electrolytes of chitosan doped with erbium triflate. Journal of Non-Crystalline Solids. 2018;482:183–191.
  • 2. Eren E, Karaca GY, Koc U, Oksuz L, Oksuz AU. Electrochromic characteristics of radio frequency plasma sputtered WO3 thin films onto flexible polyethylene terephthalate substrates. Thin Solid Films. 2017; 634: 40–50.
  • 3. Alves R, Sentanin F, Sabadini RC, Pawlicka A, Silva MM. Solid polymer electrolytes based on chitosan and Dy(CF3SO3)3 for electrochromic devices. Solid State Ionics. 2017; 310:112–120.
  • 4. Wang W, Guan S, Li M, Zheng J, Xu C. A novel hybrid quasi-solid polymer electrolyte based on porous PVB and modified PEG for electrochromic application. Organic Electronics.2018; 56:268–275.
  • 5. Thakur VK, Ding G, Ma J, Lee PS, Lu X. Hybrid materials and polymer electrolytes for electrochromic device applications. Adv. Mater. 2012;24:4071–4096.
  • 6. Alves R, Sentanin F, Sabadini RC, Fernandes M, Zea Bermudez Vd, Pawlicka A, Silva MM. Samarium (III) triflate-doped chitosan electrolyte for solid state electrochromic devices. Electrochimica Acta. 2018; 267: 51-62.
  • 7. Ataalla M, Afify AS, Hassan M, Abdallah M, Milanova M, Aboul-Enein HYA, Mohamed A. Tungsten-based glasses for photochromic, electrochromic, gas sensors, and related applications: A review. Journal of Non-Crystalline Solids. 2018; 491: 43–54.
  • 8. Patel GB, Singh NL, Singh F. Modification of chitosan-based biodegradable polymer by irradiation with MeV ions for electrolyte applications. Materials Science & Engineering B. 2017;225: 150–159.
  • 9. Eren E, Aslan E, Oksuz AU. The Effect of Anionic Surfactant on the Properties of Polythiophene/Chitosan Composites. Polymer Engineering and Science. 2014; 54(11):2632-2640.
  • 10. Aziz SB, Abidin ZHZ, Arof AK. Influence of silver ion reduction on electrical modulus parameters of solid polymer electrolyte based on chitosan silver triflate electrolyte membrane. eXPRESS Polymer Letters. 2010; 4(5):300–310.
  • 11. Arof AK, Osman Z, Morni NM, Kamarulzaman N, Ibrahim Z A, Muhamad M R, Chitosan-based electrolyte for secondary lithium cells. Journal of Materials Science. 2001; 36 : 791– 793.
  • 12. Leones R, Reis PM, Sabadini RC, Ravaro LP, Silva IDA, Camargo ASS de, Donosco JP, Magon CJ, Esperança JMSS, Pawlicka A, Silva MM. A luminescent europium ionic liquid to improve the performance of chitosan polymer electrolytes. Electrochimica Acta. 2017; 240 : 474–485.
  • 13. Alves R, Sabadini RC, Silva DA, Donoso JP, Magon CJ, Pawlicka A, Silva MM, Binary Ce(III) and Li(I) triflate salt composition for solid polymer electrolytes. Ionics. 2018; 24:2321–2334.
  • 14. Majid SR, Arof AK, Electrical behavior of proton-conducting chitosan-phosphoric acid-based electrolytes. Physica B. 2007; 390: 209–215.
  • 15. Cifarelli A, Parisini A, Berzina T, Iannotta S, Organic memristive element with Chitosan as solid polyelectrolyte. Microelectronic Engineering. 2018; 193: 65–70.
  • 16. Chávez E L, Oviedo-Roa R, Contreras-Pérez G, Martínez-Magadán JM, Castillo-Alvarado FL, Theoretical studies of ionic conductivity of crosslinked chitosan membranes.International Journal of hydrogen energy. 2010; 3 5: 12141-12146.
  • 17. Alves R, Sentanin F, Sabadini RC, Pawlicka A, Silva MM. Influence of cerium triflate and glycerol on electrochemical performance of chitosan electrolytes for electrochromic devices. Electrochimica Acta. 2016; 217: 108–116.
  • 18. Eren E, Karaca GY, Alver C, Oksuz AU. Fast electrochromic response for RF-magnetron sputtered electrospun V2O5 mat. European Polymer Journal. 2016; 84: 345–354.
  • 19. Zhang R, Xu X, Fan X, Yang R, Wu T, Zhang C. Application of conducting micelles self-assembled from commercial poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) and chitosan for electrochemical biosensor. Colloid and Polymer Science. 2018; 296:495–502.
  • 20. Poongodi S, Kumar PS, Mangalaraj D, Ponpandian N, Meena P, Masuda Y, Lee C. Electrodeposition of WO3 nanostructured thin films for electrochromic and H2S gas sensor applications. Journal of Alloys and Compounds. 2017; 719:71-81.
  • 21. Tang Q, Li H, Yue Y, Zhang Q, Wang H, Li Y, Chen P, 1-Ethyl-3-methylimidazolium tetrafluoroborate-doped high ionic conductivity gel electrolytes with reduced anodic reaction potentials for electrochromic devices. Materials and Design. 2017; 118: 279–285.
  • 22. Deka J R, Saikia D, Lou G-W, Lin C-H, Fang J, Yang Y-C, Kao H-M, Design, synthesis and characterization of polysiloxane and polyetherdiamine based comb-shaped hybrid solid polymer electrolytes for applications in electrochemical devices. Materials and Design. 2017; 118: 279–285.
  • 23. Puguan J M C, Boton L B, Kim H, Triazole-based ionene exhibiting tunable structure and ionic conductivity obtained via cycloaddition reaction: A new polyelectrolyte for electrochromic devices. Solar Energy Materials and Solar Cells. 2018; 18: 210–218.
  • 24. Ramanavicius A, Genys P, Ramanaviciene A, Electrochemical Impedance Spectroscopy Based Evaluation of 1,10-Phenanthroline-5,6-dione and Glucose Oxidase Modified Graphite Electrode. Electrochimica Acta. 2014; 146: 659–665.
  • 25. Wang J-Y, Wang M-C, Jan D-J. Synthesis of poly(methyl methacrylate)-succinonitrile composite polymer electrolyte and its application for flexible electrochromic devices. Solar Energy Materials & Solar Cells.2017; 160: 476–483.
  • 26. Virbukas D, Sriubas M, Laukaitis G. Structural and electrical study of samarium doped cerium oxide thin films prepared by e-beam evaporation. Solid State Ionics. 2015; 271: 98–102.
  • 27. Leones R, Sabadini R C, Esperança J M S S, Pawlicka A, Silva MM, Effect of storage time on the ionic conductivity of chitosan-solid polymer electrolytes incorporating cyano-based ionic liquids. Electrochimica Acta. 2017;232:22–29.
  • 28. Ge Q., Zhou L., Lian Y.-M., Zhang X., Chen R., Yang W., Metal-phosphide-doped Li7P3S11 glass-ceramic electrolyte with high ionic conductivity for all-solid-state lithium-sulfur batteries. Electrochemistry Communications. 2018; 97: 100–104.
  • 29. Kim H., Kim Y.-II, Partial nitridation of Li4SiO4 and ionic conductivity of Li4.1SiO3.9N0.1. Ceramics International. 2018; 44 : 9058–9062.
  • 30. Liu H-M, Saikia D, Wu C-G, Fang J, Kao H-M, Solid polymer electrolytes based on coupling of polyetheramine and organosilane for applications in electrochromic devices. Solid State Ionics . 2017; 303:144–153.
  • 31. Zhu Y, Otley M T, Alamer F A, Kumar A, Zhang X, Mamangun D M D, Li M, Arden B G, Sotzing G A, Electrochromic properties as a function of electrolyte on the performance of electrochromic devices consisting of a single-layer polymer. Organic Electronics. 2014; 15 : 1378–1386.
  • 32. Andrade JR, Raphael E, Pawlicka A. Plasticized pectin-based gel electrolytes. Electrochimica Acta. 2009; 54: 6479–6483.
  • 33. Ledwon P, Andrade JR, Lapkowski M, Pawlicka A. Hydroxypropyl cellulose-based gel electrolyte for electrochromic devices. Electrochimica Acta. 2015; 159:227-233.
  • 34. Liu S, Wang W. Improved electrochromic performances of WO3-based thin films via addition of CNTs. J Sol-Gel Sci Technol. 2016; 80:480–486.
  • 35. Rocha MD, He Y, Diao X, Rougier A. Influence of cycling temperature on the electrochromic properties of WO3/NiO devices built with various thicknesses. Solar Energy Materials and Solar Cells. 2018; 177: 57–65.
  • 36. Ling H, Liu L, Lee PS, Mandler D, Lu X. Layer-by-Layer Assembly of PEDOT:PSS and WO3 Nanoparticles: Enhanced Electrochromic Coloration Efficiency and Mechanism Studies by Scanning Electrochemical Microscopy. Electrochimica Acta. 2015; 174:57–65.
  • 37. Kadam LD, Patil PS. Studies on electrochromic properties of nickel oxide thin films prepared by spray pyrolysis technique. Solar Energy Materials & Solar Cells. 2001; 69:361-369.
  • 38. Chang-Jian C-W, Cho E-C, Yen S-C, Ho B-C, Lee K-C, Huang J-H, Hsiao Y-S. Facile preparation of WO3/PEDOT:PSS composite for inkjet printed electrochromic window and its performance for heat shielding. Dyes and Pigments. 2018; 148:465-473.
  • 39. Zhang S, Sun G, He Y, Fu R, Gu Y, Chen S. Preparation, Characterization, and Electrochromic Properties of Nanocellulose-Based Polyaniline Nanocomposite Films. ACS Appl. Mater. Interfaces 2017, 9, 16426−16434.
  • 40. Kalagi S S, Dalavi D S, Mali S S, Inamdar A I, Patil R S, Patil P S, Study of Novel WO3-PEDOT:PSS Bilayered Thin Film for Electrochromic Applications. Nanoscience and Nanotechnology Letters. 2012;4:1146-1154.
  • 41. Patil DS, Pawar SA, Hwang J, Kim JH, Patil PS, Shşn JC. Silver incorporated PEDOT: PSS for enhanced electrochemical performance. Journal of Industrial and Engineering Chemistry. 2016;42: 113–120.
  • 42. Kawahara J, Ersman PA, Engquist I, Berggren M. Improving the color switch contrast in PEDOT:PSS-based electrochromic displays. Organic Electronics. 2012; 13 :469–474.
  • 43. Assis LMN, Leones R, Kanicki J, Pawlicka A, Silva MM. Prussian blue for electrochromic devices. Journal of Electroanalytical Chemistry. 2016. 777:33–39.
  • 44. Eren E, Alver C, Karaca GY, Uygun E, Oksuz AU. Enhanced electrochromic performance of WO3 hybrids using polymer plasma hybridization process. Synthetic Metals. 2018; 235: 115–124.
  • 45. Firat YE, Peksoz A, Efficiency enhancement of electrochromic performance in NiO thin film via Cu doping for energy-saving potential. Electrochimica Acta. 2019; 295:645-654. 46. Chen X, Yang M, Qu Q, Zhao Q, Zou W. A regiosymmetric blue-to-transmissive electrochromic polymer based on 3,4-ethylenedioxythiophene with bromomethyl pendant groups. Journal of Electroanalytical Chemistry. 2018; 820 : 60–66.
  • 47. Bathe RB, Patil PS. Electrochromic characteristics of fibrous reticulated WO3 thin films prepared by pulsed spray pyrolysis technique. Solar Energy Materials & Solar Cells. 2007; 91: 1097–1101.
  • 48. Kiristi M, Bozduman F, Oksuz AU, Oksuz L, Hala A. Solid State Electrochromic Devices of Plasma Modified WO3 Hybrids. Ind. Eng. Chem. Res. 2014; 53: 15917−15922.
  • 49. Fernandes M, Freitas VT, Pereira S, Fortunato E, Ferreira RAS, Carlos LD, Rego R, Bermudez VdZ. Green Li+-and Er3+-doped poly(ε-caprolactone)/siloxanebiohybrid electrolytes for smart electrochromic windows. Solar Energy Materials & Solar Cells 2014; 123: 203–210.
  • 50. Dulgerbaki C, Oksuz AU. Fabricating polypyrrole/tungsten oxide hybrid based electrochromic devices using different ionic liquids. Polym. Adv. Technol. 2016;27: 73–81.
  • 51. Santos GH, Gavim AAX, Silva RF, Rodrigues PC, Kamikawachi RC, Deus JFd, Macedo AG. Roll-to-roll processed PEDOT:PSS thin films: application in flexible electrochromic devices. J Mater Sci: Mater Electron.2016; 27(10) 11072-11079.
There are 50 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Articles
Authors

Esin Eren

Publication Date September 1, 2018
Submission Date June 14, 2018
Acceptance Date December 30, 2018
Published in Issue Year 2018 Volume: 5 Issue: 3

Cite

Vancouver Eren E. Li+ doped chitosan-based solid polymer electrolyte incorporated with PEDOT:PSS for electrochromic device. JOTCSA. 2018;5(3):1413-22.