Research Article
BibTex RIS Cite
Year 2020, Volume: 7 Issue: 2, 545 - 560, 23.06.2020
https://doi.org/10.18596/jotcsa.605805

Abstract

References

  • 1. Metzger JO, Biermann U. Sustainable development and renewable feedstocks for chemical industry. In: Bozell JJ, Patel MK, editors. Feedstocks for the Future, Renewables for the Production of Chemicals and Materials. Washington, DC: American Chemical Society; 2006 Jan, Vol. 921, p. 13–26.
  • 2. Biermann U, Bornscheuer U, Meier MAR, Metzger JO, Schäfer HJ. Oils and fats as renewable raw materials in chemistry. Angew. Chem. Int. Ed. 2011 Mar; 50:3854–3871.
  • 3. Wiggers VR, Beims RF, Ender L, Simionatto EL, Meier HF. Renewable hydrocarbons from triglyceride's thermal cracking frontiers in bioenergy and biofuels. In: Lopes EJ, Zepka LQ, editors. Frontiers in Bioenergy and Biofuels. London: IntechOpen Limited; 2017 Jan, p. 407–424.
  • 4. Agyeman GA, Gyamerah M, Biney PO, Woldesenbet S. Extraction and characterization of triglycerides from coffeeweed and switchgrass seeds as potential feedstocks for biodiesel production. J. Sci. Food Agric. 2016 Mar; 96: 4390–4397.
  • 5. Kubickova I, Kubicka D. Utilization of triglycerides and related feedstocks for production of clean hydrocarbon fuels and petrochemicals: a review. Waste Biomass Valori. 2010 Aug; 1: 293–308.
  • 6. Lligadas G, Ronda JC, Galià M, Cádiz V. Oleic and undecylenic acids as renewable feedstocks in the synthesis of polyols and polyurethanes. Polymers 2010 Oct; 2: 440–453.
  • 7. Maher KD, Bressler DC. Pyrolysis of triglyceride materials for the production of renewable fuels and chemicals. Bioresour. Technol. 2007 Sep; 98: 2351–2368.
  • 8. Fréty R, Da Rocha MGC, Brandão ST, Pontes LAM, Padilha JF, Borges LEP, Gonzalez WA. Cracking and hydrocracking of triglycerides for renewable liquid fuels: alternative processes to transesterification. J. Braz. Chem. Soc. 2011 July; 22: 1206–1220.
  • 9. Crivello JV, Narayan R. Epoxidized triglycerides as renewable monomers in photoinitiated cationic polymerization. Chem. Mater. 1992 May; 4: 692–699.
  • 10. Wells PA, Foster NR, Liong KK, Chaplin RP. Supercritical fluid extraction of triglycerides. Sep. Sci. Technol. 1990 Oct; 25: 139–154.
  • 11. Temelli F. Extraction of triglycerides and phospholipids from canola with supercritical carbon dioxide and ethanol. J. Food Sci. 1992 March; 57: 440–443.
  • 12. Chen WH, Chen CH, Chang CMJ, Chiu YH, Hsiang D. Supercritical carbon dioxide extraction of triglycerides from Jatropha curcas L. seeds. J. Supercrit. Fluids 2009 Dec; 51: 174–180.
  • 13. Spricigo BC, Pinto LT, Bolzan A, Novais AF. Extraction of essential oil and lipids from nutmeg by liquid carbon dioxide. J. Supercrit. Fluids 1999 July; 15: 253–259.
  • 14. Working paper, Food and Agriculture Organization of the United Nations, Rome, Nutmeg and derivatives, http://www.fao.org/3/v4084e/v4084e.pdf/, 1994 (accessed 10 June 2019).
  • 15. Muchtaridi AS, Apriyantono A, Mustarichie R. Identification of compounds in the essential oil of nutmeg seeds (Myristica fragrans Houtt.) that inhibit locomotor activity in mice. Int. J. Mol. Sci. 2010 Nov; 1: 4771–4781.
  • 16. Krishnamoorthy B, Rema J. Nutmeg and mace, in: Peter KV (Ed.), Handbook of Herbs and Spices, Woodhead Publishing, Cambridge, vol. 1, 2012, pp. 399–416.
  • 17. Beal GD. Trimyristin, Org. Synth. 1926; 6: 100.
  • 18. Ikan R. Natural Products a Laboratory Guide, second ed., Academic Press, Inc., London, 1991, pp. 26–27.
  • 19. Lugemwa FN. Extraction of betulin, trimyristin, eugenol and carnosic acid using water-organic solvent mixtures. Molecules 2012 Aug; 17: 9274–9282.
  • 20. Frank F, Roberts T, Snell J, Yates C, Collins J. Trimyristin from nutmeg. J. Chem. Educ. 1971 Apr; 48: 255–256.
  • 21. De Mattos MCS, Nicodem DE. Soap from nutmeg: an integrated introductory organic, chemistry laboratory experiment. J. Chem. Educ. 2002 Jan; 79: 94–95.
  • 22. Leser ME, Luisi PL, Paimieri S. The use of reverse micelles for the simultaneous extraction of oil and proteins from vegetable meal. 1989 Nov; 34: 1140–1146.
  • 23. Prevot AB, Gulmini M, Zelano V, Pramauro E. Microwave-assisted extraction of polycyclic aromatic hydrocarbons from marine sediments using Nonionic surfactant solutions. Anal. Chem. 2001 June; 73: 3790–3795.
  • 24. Shi Z, Zhu X, Cheng Q, Zhang H. Micellar extraction and preconcentration of anthraquinone derivatives from rhubarb prior to their HPLC-DAD determination. J. Liq. Chromatogr. Relat. Technol. 2007 Feb; 30: 255–271.
  • 25. Ugolini L, De Nicola G, Palmieri S. Use of reverse micelles for the simultaneous extraction of oil, proteins, and glucosinolates from cruciferous oilseeds. J. Agric. Food Chem. 2008 Feb; 56: 1595–1601.
  • 26. Li F, Yu Y, Zhang H, Liu T, Lia Y, Duan G. Infrared-assisted non-ionic surfactant extraction as a green analytical preparatory technique for the rapid extraction and pre-concentration of picroside I and picroside II from Picrorhiza scrophulariiflora Pennell. Anal. Methods 2013 May; 5: 3747–3753.
  • 27. Tuntiwiwattanapun N, Tongcumpou C, Haagenson D, Wiesenborn D. Development and scale-up of aqueous surfactant-assisted extraction of canola oil for use as biodiesel feedstock. J. Am. Oil Chem. Soc. 2013 Apr; 90: 1089–1099.
  • 28. Heng MY, Thio BJ, Ong ES. Surfactant-assisted pressurized liquid extraction at room temperature for radix glycyrrhizae by a new class of surfactants. J. Chromatogr. Sci. 2016 May-Jun; 54: 864–870.
  • 29. Ramly NH, Zakaria R, Naim MN. Surfactant-assisted aqueous extraction of palm-pressed mesocarp fiber residual oil with Tween 80 solution. Sep. Sci. Technol. 2017 May; 52: 1796–1805.
  • 30. Kadioglu SI, Phan TT, Sabatini DA. Surfactant-based oil extraction of corn germ. J. Am. Oil Chem. Soc. 2011 June; 88: 863–869.
  • 31. Yıldırım A. Synthesis of novel alkyl-sulfanyl-1,3,4-oxadiazolyl-1,3,5,7-tetraazatricyclic ammonium chloride type cationic surfactants. J. Het. Chem. 2015 March; 52: 522–526.
  • 32. Martino W, De la Mora JF, Yoshida Y, Saito G, Wilkes J. Surface tension measurements of highly conducting ionic liquids. Green Chem. 2006 Jan; 8: 390–397.
  • 33. Sugden S. The determination of surface tension from the rise in capillary tubes. J. Chem. Soc., Trans. 1921; 119: 1483–1492.
  • 34. Negm NA, Mohamed AS. Surface and thermodynamic properties of diquaternary bola-form amphiphiles containing an aromatic spacer. J. Surf. Deterg. 2004 Jan; 7: 23–30.
  • 35. Akzo Nobel surface chemistry LLC, Technical information surface chemistry. HLB & emulsification description of hydrophile, lipophile balance and use of HLB in producing emulsions. https://vdocuments.site/documents/akzonobel-tb-hlbemulsions.html/, 2008 (accessed 10 June 2019).
  • 36. Szymanowski J, Voelkel A. Hydrophile lipophile balance of hydroxyoximes in McGowan scale and their partition and extraction properties. J. Chem. Tech. Biotechnol. 1992 Oct; 54: 19–26.
  • 37. Singh V, Tyagi R. Unique micellization and cmc aspects of gemini surfactant: an overview. J. Disper. Sci. Technol. 2014 Aug; 35: 1774–1792.
  • 38. Öztürk S, Yıldırım A, Gece G, Türkdemir H. Flexible semicrown ether-linked symmetric cationic gemini surfactants: synthesis and evaluation as catalysts for acceleration of diastereoselective [3 + 2] cycloaddition reaction in reversed phase micellar media. J. Surf. Deterg. 2019 Nov; 22: 197–208.
  • 39. Dong B, Li N, Zheng L, Yu L, Inoue T. Surface adsorption and micelle formation of surface active ionic liquids in aqueous solution. Langmuir 2007 Mar; 23: 4178–4182.
  • 40. El-Sayed R, Alotaibi HH, Elhady HA. Synthesis, surface parameters, and biodegradability of water-soluble surfactants for various applications. J. Oleo Sci. 2018 May; 67: 551–569.
  • 41. Davies JT. A quantitative kinetic theory of emulsion type, I. physical chemistry of the emulsifying agent, in: Schulman JH. (Ed.), Proceedings of the second international congress of surface activity: Gas-liquid and liquid-liquid interface. Butterworths, London, 1957 pp. 426–438. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.473.424&rep=rep1&type=pdf/, (accessed 10 June 2019).
  • 42. Zana R, Xia J. Introduction, in: Zana R, Xia J. (Eds.), Gemini Surfactants: Synthesis, Interfacial and Solution-Phase Behavior, and Application. Marcel Dekker Inc., New York, 2004, pp. 1–8.
  • 43. Tawfik SM. Synthesis, surface, biological activity and mixed micellar phase properties of some biodegradable gemini cationic surfactants containing oxycarbonyl groups in the lipophilic part. J. Ind. Eng. Chem. 2015 Aug; 28: 171–183.
  • 44. Laschewsky A, Wattebled L, Arotçaréna M, Jiwan JLH, Rakotoaly RH. Synthesis and properties of cationic oligomeric surfactants. Langmuir, 2005 July; 21: 7170–7179.
  • 45. Li W, Sun C, Hou B, Zhou X. Room temperature synthesis and catalytic properties of surfactant-modified Ag nanoparticles. Int. J. Spectrosc. 2012 July; 2012.
  • 46. Han Y, Wang Y. Aggregation behavior of gemini surfactants and their interaction with macromolecules in aqueous solution. Phys. Chem. Chem. Phys. 2011 Jan; 13: 1939–1956.
  • 47. Crescenzo AD, Germani R, Canto ED, Giordani S, Savelli G, Fontana A. Effect of surfactant structure on carbon nanotube sidewall adsorption. Eur. J. Org. Chem. 2011 Aug; 2011: 5641–5648.
  • 48. Rosen M, Wang JH, Chen P, Zhu Y. Ultralow interfacial tension for enhanced oil recovery at very low surfactant concentrations. Langmuir 2005 Mar; 21: 3749–3756.
  • 49. Idouhar M, Tazerouti A. Spectrophotometric determination of cationic surfactants using Patent Blue V: application to the wastewater industry in Algiers. J. Surfactants Deterg. 2008 Dec; 11: 263–267.
  • 50. Pekker M, Shneider MN. Interaction between electrolyte ions and the surface of a cell lipid, membrane. J. Phys. Chem. Biophys. 2015 Mar; 5: 1000177.

An improved isolation of trimyristin from Myristica fragrans as a renewable feedstock with assistance of novel cationic gemini surfactant

Year 2020, Volume: 7 Issue: 2, 545 - 560, 23.06.2020
https://doi.org/10.18596/jotcsa.605805

Abstract

In the present
work, surfactant-assisted convenient extraction method was developed for the
isolation of trimyristin from nutmeg. Commercially available monomeric
surfactants and novel readily synthesized cationic dimeric surfactant were used
as auxiliary chemicals. The improved isolation method herein, revealed that the
combination of dimeric surfactant with hexane allows selective extraction
(without colored polar components of nutmeg) and maximum yield of triglyceride.
In addition, the developed method is more practical than existing protocols and
provides higher yields of trimyristin in short period of time.

References

  • 1. Metzger JO, Biermann U. Sustainable development and renewable feedstocks for chemical industry. In: Bozell JJ, Patel MK, editors. Feedstocks for the Future, Renewables for the Production of Chemicals and Materials. Washington, DC: American Chemical Society; 2006 Jan, Vol. 921, p. 13–26.
  • 2. Biermann U, Bornscheuer U, Meier MAR, Metzger JO, Schäfer HJ. Oils and fats as renewable raw materials in chemistry. Angew. Chem. Int. Ed. 2011 Mar; 50:3854–3871.
  • 3. Wiggers VR, Beims RF, Ender L, Simionatto EL, Meier HF. Renewable hydrocarbons from triglyceride's thermal cracking frontiers in bioenergy and biofuels. In: Lopes EJ, Zepka LQ, editors. Frontiers in Bioenergy and Biofuels. London: IntechOpen Limited; 2017 Jan, p. 407–424.
  • 4. Agyeman GA, Gyamerah M, Biney PO, Woldesenbet S. Extraction and characterization of triglycerides from coffeeweed and switchgrass seeds as potential feedstocks for biodiesel production. J. Sci. Food Agric. 2016 Mar; 96: 4390–4397.
  • 5. Kubickova I, Kubicka D. Utilization of triglycerides and related feedstocks for production of clean hydrocarbon fuels and petrochemicals: a review. Waste Biomass Valori. 2010 Aug; 1: 293–308.
  • 6. Lligadas G, Ronda JC, Galià M, Cádiz V. Oleic and undecylenic acids as renewable feedstocks in the synthesis of polyols and polyurethanes. Polymers 2010 Oct; 2: 440–453.
  • 7. Maher KD, Bressler DC. Pyrolysis of triglyceride materials for the production of renewable fuels and chemicals. Bioresour. Technol. 2007 Sep; 98: 2351–2368.
  • 8. Fréty R, Da Rocha MGC, Brandão ST, Pontes LAM, Padilha JF, Borges LEP, Gonzalez WA. Cracking and hydrocracking of triglycerides for renewable liquid fuels: alternative processes to transesterification. J. Braz. Chem. Soc. 2011 July; 22: 1206–1220.
  • 9. Crivello JV, Narayan R. Epoxidized triglycerides as renewable monomers in photoinitiated cationic polymerization. Chem. Mater. 1992 May; 4: 692–699.
  • 10. Wells PA, Foster NR, Liong KK, Chaplin RP. Supercritical fluid extraction of triglycerides. Sep. Sci. Technol. 1990 Oct; 25: 139–154.
  • 11. Temelli F. Extraction of triglycerides and phospholipids from canola with supercritical carbon dioxide and ethanol. J. Food Sci. 1992 March; 57: 440–443.
  • 12. Chen WH, Chen CH, Chang CMJ, Chiu YH, Hsiang D. Supercritical carbon dioxide extraction of triglycerides from Jatropha curcas L. seeds. J. Supercrit. Fluids 2009 Dec; 51: 174–180.
  • 13. Spricigo BC, Pinto LT, Bolzan A, Novais AF. Extraction of essential oil and lipids from nutmeg by liquid carbon dioxide. J. Supercrit. Fluids 1999 July; 15: 253–259.
  • 14. Working paper, Food and Agriculture Organization of the United Nations, Rome, Nutmeg and derivatives, http://www.fao.org/3/v4084e/v4084e.pdf/, 1994 (accessed 10 June 2019).
  • 15. Muchtaridi AS, Apriyantono A, Mustarichie R. Identification of compounds in the essential oil of nutmeg seeds (Myristica fragrans Houtt.) that inhibit locomotor activity in mice. Int. J. Mol. Sci. 2010 Nov; 1: 4771–4781.
  • 16. Krishnamoorthy B, Rema J. Nutmeg and mace, in: Peter KV (Ed.), Handbook of Herbs and Spices, Woodhead Publishing, Cambridge, vol. 1, 2012, pp. 399–416.
  • 17. Beal GD. Trimyristin, Org. Synth. 1926; 6: 100.
  • 18. Ikan R. Natural Products a Laboratory Guide, second ed., Academic Press, Inc., London, 1991, pp. 26–27.
  • 19. Lugemwa FN. Extraction of betulin, trimyristin, eugenol and carnosic acid using water-organic solvent mixtures. Molecules 2012 Aug; 17: 9274–9282.
  • 20. Frank F, Roberts T, Snell J, Yates C, Collins J. Trimyristin from nutmeg. J. Chem. Educ. 1971 Apr; 48: 255–256.
  • 21. De Mattos MCS, Nicodem DE. Soap from nutmeg: an integrated introductory organic, chemistry laboratory experiment. J. Chem. Educ. 2002 Jan; 79: 94–95.
  • 22. Leser ME, Luisi PL, Paimieri S. The use of reverse micelles for the simultaneous extraction of oil and proteins from vegetable meal. 1989 Nov; 34: 1140–1146.
  • 23. Prevot AB, Gulmini M, Zelano V, Pramauro E. Microwave-assisted extraction of polycyclic aromatic hydrocarbons from marine sediments using Nonionic surfactant solutions. Anal. Chem. 2001 June; 73: 3790–3795.
  • 24. Shi Z, Zhu X, Cheng Q, Zhang H. Micellar extraction and preconcentration of anthraquinone derivatives from rhubarb prior to their HPLC-DAD determination. J. Liq. Chromatogr. Relat. Technol. 2007 Feb; 30: 255–271.
  • 25. Ugolini L, De Nicola G, Palmieri S. Use of reverse micelles for the simultaneous extraction of oil, proteins, and glucosinolates from cruciferous oilseeds. J. Agric. Food Chem. 2008 Feb; 56: 1595–1601.
  • 26. Li F, Yu Y, Zhang H, Liu T, Lia Y, Duan G. Infrared-assisted non-ionic surfactant extraction as a green analytical preparatory technique for the rapid extraction and pre-concentration of picroside I and picroside II from Picrorhiza scrophulariiflora Pennell. Anal. Methods 2013 May; 5: 3747–3753.
  • 27. Tuntiwiwattanapun N, Tongcumpou C, Haagenson D, Wiesenborn D. Development and scale-up of aqueous surfactant-assisted extraction of canola oil for use as biodiesel feedstock. J. Am. Oil Chem. Soc. 2013 Apr; 90: 1089–1099.
  • 28. Heng MY, Thio BJ, Ong ES. Surfactant-assisted pressurized liquid extraction at room temperature for radix glycyrrhizae by a new class of surfactants. J. Chromatogr. Sci. 2016 May-Jun; 54: 864–870.
  • 29. Ramly NH, Zakaria R, Naim MN. Surfactant-assisted aqueous extraction of palm-pressed mesocarp fiber residual oil with Tween 80 solution. Sep. Sci. Technol. 2017 May; 52: 1796–1805.
  • 30. Kadioglu SI, Phan TT, Sabatini DA. Surfactant-based oil extraction of corn germ. J. Am. Oil Chem. Soc. 2011 June; 88: 863–869.
  • 31. Yıldırım A. Synthesis of novel alkyl-sulfanyl-1,3,4-oxadiazolyl-1,3,5,7-tetraazatricyclic ammonium chloride type cationic surfactants. J. Het. Chem. 2015 March; 52: 522–526.
  • 32. Martino W, De la Mora JF, Yoshida Y, Saito G, Wilkes J. Surface tension measurements of highly conducting ionic liquids. Green Chem. 2006 Jan; 8: 390–397.
  • 33. Sugden S. The determination of surface tension from the rise in capillary tubes. J. Chem. Soc., Trans. 1921; 119: 1483–1492.
  • 34. Negm NA, Mohamed AS. Surface and thermodynamic properties of diquaternary bola-form amphiphiles containing an aromatic spacer. J. Surf. Deterg. 2004 Jan; 7: 23–30.
  • 35. Akzo Nobel surface chemistry LLC, Technical information surface chemistry. HLB & emulsification description of hydrophile, lipophile balance and use of HLB in producing emulsions. https://vdocuments.site/documents/akzonobel-tb-hlbemulsions.html/, 2008 (accessed 10 June 2019).
  • 36. Szymanowski J, Voelkel A. Hydrophile lipophile balance of hydroxyoximes in McGowan scale and their partition and extraction properties. J. Chem. Tech. Biotechnol. 1992 Oct; 54: 19–26.
  • 37. Singh V, Tyagi R. Unique micellization and cmc aspects of gemini surfactant: an overview. J. Disper. Sci. Technol. 2014 Aug; 35: 1774–1792.
  • 38. Öztürk S, Yıldırım A, Gece G, Türkdemir H. Flexible semicrown ether-linked symmetric cationic gemini surfactants: synthesis and evaluation as catalysts for acceleration of diastereoselective [3 + 2] cycloaddition reaction in reversed phase micellar media. J. Surf. Deterg. 2019 Nov; 22: 197–208.
  • 39. Dong B, Li N, Zheng L, Yu L, Inoue T. Surface adsorption and micelle formation of surface active ionic liquids in aqueous solution. Langmuir 2007 Mar; 23: 4178–4182.
  • 40. El-Sayed R, Alotaibi HH, Elhady HA. Synthesis, surface parameters, and biodegradability of water-soluble surfactants for various applications. J. Oleo Sci. 2018 May; 67: 551–569.
  • 41. Davies JT. A quantitative kinetic theory of emulsion type, I. physical chemistry of the emulsifying agent, in: Schulman JH. (Ed.), Proceedings of the second international congress of surface activity: Gas-liquid and liquid-liquid interface. Butterworths, London, 1957 pp. 426–438. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.473.424&rep=rep1&type=pdf/, (accessed 10 June 2019).
  • 42. Zana R, Xia J. Introduction, in: Zana R, Xia J. (Eds.), Gemini Surfactants: Synthesis, Interfacial and Solution-Phase Behavior, and Application. Marcel Dekker Inc., New York, 2004, pp. 1–8.
  • 43. Tawfik SM. Synthesis, surface, biological activity and mixed micellar phase properties of some biodegradable gemini cationic surfactants containing oxycarbonyl groups in the lipophilic part. J. Ind. Eng. Chem. 2015 Aug; 28: 171–183.
  • 44. Laschewsky A, Wattebled L, Arotçaréna M, Jiwan JLH, Rakotoaly RH. Synthesis and properties of cationic oligomeric surfactants. Langmuir, 2005 July; 21: 7170–7179.
  • 45. Li W, Sun C, Hou B, Zhou X. Room temperature synthesis and catalytic properties of surfactant-modified Ag nanoparticles. Int. J. Spectrosc. 2012 July; 2012.
  • 46. Han Y, Wang Y. Aggregation behavior of gemini surfactants and their interaction with macromolecules in aqueous solution. Phys. Chem. Chem. Phys. 2011 Jan; 13: 1939–1956.
  • 47. Crescenzo AD, Germani R, Canto ED, Giordani S, Savelli G, Fontana A. Effect of surfactant structure on carbon nanotube sidewall adsorption. Eur. J. Org. Chem. 2011 Aug; 2011: 5641–5648.
  • 48. Rosen M, Wang JH, Chen P, Zhu Y. Ultralow interfacial tension for enhanced oil recovery at very low surfactant concentrations. Langmuir 2005 Mar; 21: 3749–3756.
  • 49. Idouhar M, Tazerouti A. Spectrophotometric determination of cationic surfactants using Patent Blue V: application to the wastewater industry in Algiers. J. Surfactants Deterg. 2008 Dec; 11: 263–267.
  • 50. Pekker M, Shneider MN. Interaction between electrolyte ions and the surface of a cell lipid, membrane. J. Phys. Chem. Biophys. 2015 Mar; 5: 1000177.
There are 50 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Articles
Authors

Ayhan Yıldırım 0000-0002-2328-9754

Serkan Öztürk 0000-0002-9396-1403

Haluk Türkdemir 0000-0002-1478-0437

Atakan Kolalı This is me 0000-0001-9563-9381

Beyza Gökçem Atalay This is me 0000-0003-0849-0422

Hatice Kocataş This is me 0000-0002-2404-0563

Publication Date June 23, 2020
Submission Date August 16, 2019
Acceptance Date May 18, 2020
Published in Issue Year 2020 Volume: 7 Issue: 2

Cite

Vancouver Yıldırım A, Öztürk S, Türkdemir H, Kolalı A, Atalay BG, Kocataş H. An improved isolation of trimyristin from Myristica fragrans as a renewable feedstock with assistance of novel cationic gemini surfactant. JOTCSA. 2020;7(2):545-60.