Derleme
BibTex RIS Kaynak Göster
Yıl 2021, Cilt: 8 Sayı: 4, 1217 - 1250, 30.11.2021
https://doi.org/10.18596/jotcsa.1000771

Öz

Kaynakça

  • 1. Stanovnik B, Tišler M. Synthesis of pyridazine derivatives—VIII. Tetrahedron. 1967 Jan;23(1):387–95.
  • 2. Liu J, Zhang Y, Huang H, Lei X, Tang G, Cao X, et al. Recent advances in Bcr‐Abl tyrosine kinase inhibitors for overriding T315I mutation. Chem Biol Drug Des. 2021 Mar;97(3):649–64.
  • 3. AbdelHaleem A, Mansour AO, AbdelKader M, Arafa RK. Selective VEGFR-2 inhibitors: Synthesis of pyridine derivatives, cytotoxicity and apoptosis induction profiling. Bioorganic Chem. 2020 Oct;103:104222.
  • 4. Pandit SS, Kulkarni MR, Ghosh U, Pandit YB, Lad NP. Synthesis and biological evaluation of imidazo[1,2-b]pyridazines as inhibitors of TNF- α production. Mol Divers. 2018 Aug;22(3):545–60.
  • 5. Shi Q, Tebben A, Dyckman AJ, Li H, Liu C, Lin J, et al. Purine derivatives as potent Bruton’s tyrosine kinase (BTK) inhibitors for autoimmune diseases. Bioorg Med Chem Lett. 2014 May;24(9):2206–11.
  • 6. Abdel‐Maksoud MS, El‐Gamal MI, Benhalilou DR, Ashraf S, Mohammed SA, Oh C. Mechanistic/mammalian target of rapamycin: Recent pathological aspects and inhibitors. Med Res Rev. 2019 Mar;39(2):631–64.
  • 7. Amin HS, Parikh PK, Ghate MD. Medicinal chemistry strategies for the development of phosphodiesterase 10A (PDE10A) inhibitors - An update of recent progress. Eur J Med Chem. 2021 Mar;214:113155.
  • 8. Sato T, Sekimata K, Sakai N, Watanabe H, Mishima-Tsumagari C, Taguri T, et al. Structural Basis of Activin Receptor-Like Kinase 2 (R206H) Inhibition by Bis-heteroaryl Pyrazole-Based Inhibitors for the Treatment of Fibrodysplasia Ossificans Progressiva Identified by the Integration of Ligand-Based and Structure-Based Drug Design Approaches. ACS Omega. 2020 May 26;5(20):11411–23.
  • 9. Alnabulsi S, Al-Hurani EA. Pim kinase inhibitors in cancer: medicinal chemistry insights into their activity and selectivity. Drug Discov Today. 2020 Nov;25(11):2062–9.
  • 10. Farag AK, Roh EJ. Death-associated protein kinase (DAPK) family modulators: Current and future therapeutic outcomes. Med Res Rev. 2019 Jan;39(1):349–85.
  • 11. Pandey MK, DeGrado TR. Glycogen Synthase Kinase-3 (GSK-3)-Targeted Therapy and Imaging. Theranostics. 2016;6(4):571–93.
  • 12. Wei P, Liu B, Wang R, Gao Y, Li L, Ma Y, et al. Discovery of a series of dimethoxybenzene FGFR inhibitors with 5H-pyrrolo[2,3-b]pyrazine scaffold: structure–activity relationship, crystal structural characterization and in vivo study. Acta Pharm Sin B. 2019 Mar;9(2):351–68.
  • 13. Ahammad F, Tengku Abd Rashid TR, Mohamed M, Tanbin S, Ahmad Fuad FA. Contemporary Strategies and Current Trends in Designing Antiviral Drugs against Dengue Fever via Targeting Host-Based Approaches. Microorganisms. 2019 Aug 28;7(9):296.
  • 14. Moine E, Moiré N, Dimier-Poisson I, Brunet K, Couet W, Colas C, et al. Imidazo[1,2-b]pyridazines targeting Toxoplasma gondii calcium-dependent protein kinase 1 decrease the parasite burden in mice with acute toxoplasmosis. Int J Parasitol. 2018 Jun;48(7):561–8.
  • 15. He Z-X, Gong Y-P, Zhang X, Ma L-Y, Zhao W. Pyridazine as a privileged structure: An updated review on anticancer activity of pyridazine containing bioactive molecules. Eur J Med Chem. 2021 Jan;209:112946.
  • 16. Werbel LM, Worth DF. Chapter 13. Antiparasitic Agents. In: Annual Reports in Medicinal Chemistry [Internet]. Elsevier; 1980 [cited 2021 Jun 22]. p. 120–9. ISBN: 978-0-12-040515-2.
  • 17. Sruthi K, Sumakanth M, Mahendra KC, Naresh K. Synthesis, in silico and in vitro anti-proliferative studies of some novel benzamido substituted imidazo[1,2-b]pyridazin-2-ones. Ank Üniversitesi Eczacı Fakültesi Derg. 2017;41(1):9–25.
  • 18. Schirrmacher R, Bailey JJ, Mossine AV, Scott PJH, Kaiser L, Bartenstein P, et al. Radioligands for Tropomyosin Receptor Kinase (Trk) Positron Emission Tomography Imaging. Pharmaceuticals. 2019 Jan 3;12(1):7.
  • 19. Margrey KA, McManus JB, Bonazzi S, Zecri F, Nicewicz DA. Predictive Model for Site-Selective Aryl and Heteroaryl C–H Functionalization via Organic Photoredox Catalysis. J Am Chem Soc. 2017 Aug 16;139(32):11288–99.
  • 20. Chen S, Liu L, Gao X, Hua Y, Peng L, Zhang Y, et al. Addition of alkynes and osmium carbynes towards functionalized dπ–pπ conjugated systems. Nat Commun. 2020 Dec;11(1):4651.
  • 21. Liu S, Pan P, Fan H, Li H, Wang W, Zhang Y. Photocatalytic C–H silylation of heteroarenes by using trialkylhydrosilanes. Chem Sci. 2019;10(13):3817–25.
  • 22. Yan H, Hou Z, Xu H. Photoelectrochemical C−H Alkylation of Heteroarenes with Organotrifluoroborates. Angew Chem Int Ed. 2019 Mar 26;58(14):4592–5.
  • 23. Hu X, Zhang G, Bu F, Luo X, Yi K, Zhang H, et al. Photoinduced oxidative activation of electron-rich arenes: alkenylation with H2 evolution under external oxidant-free conditions. Chem Sci. 2018;9(6):1521–6.
  • 24. Štefane B, Polanc S. CAN-Mediated Oxidation of Electron-Deficient Aryl and Heteroaryl Hydrazines and Hydrazides. Synlett. 2008 May;2008(9):1279–82.
  • 25. Stanovnik B, Tisler M, Drnovsek I. 3-bromoimidazo (1,2-b)pyridazine-bromine and 3-bromo-6-chloroimidazo (1,2-b) pyridazine-bromine complexes; new brominating agents for organic compounds. Synthesis. 1981;(12):987–9.
  • 26. Song W, Xu Q, Zhu J, Chen Y, Mu H, Huang J, et al. Imidazo[1,2- b ]pyridazine as Building Blocks for Host Materials for High-Performance Red-Phosphorescent Organic Light-Emitting Devices. ACS Appl Mater Interfaces. 2020 Apr 29;12(17):19701–9.
  • 27. Lin S, Hao P, Shen J, Fu Y. Hierarchically responsive and photochromic imidazopyridazinium iodoargentate hybrid materials. Dyes Pigments. 2018 Dec;159:457–63.
  • 28. Ma Y, Liang J, Zhao D, Chen Y-L, Shen J, Xiong B. Condensed Fukui function predicts innate C–H radical functionalization sites on multi-nitrogen containing fused arenes. RSC Adv. 2014;4(33):17262–4.
  • 29. Roskoski R. Properties of FDA-approved small molecule protein kinase inhibitors. Pharmacol Res. 2019 Jun;144:19–50.
  • 30. Hu L, Cao T, Lv Y, Ding Y, Yang L, Zhang Q, et al. Design, synthesis, and biological activity of 4-(imidazo[1,2- b ]pyridazin-3-yl)-1 H -pyrazol-1-yl-phenylbenzamide derivatives as BCR–ABL kinase inhibitors. Bioorg Med Chem Lett. 2016 Dec;26(23):5830–5.
  • 31. Lambert GK, Duhme-Klair A-K, Morgan T, Ramjee MK. The background, discovery and clinical development of BCR-ABL inhibitors. Drug Discov Today. 2013 Oct;18(19–20):992–1000.
  • 32. Lee HJ, Pham PC, Hyun SY, Baek B, Kim B, Kim Y, et al. Development of a 4-aminopyrazolo[3,4-d]pyrimidine-based dual IGF1R/Src inhibitor as a novel anticancer agent with minimal toxicity. Mol Cancer. 2018 Dec;17(1):50.
  • 33. Larocque E, Chu EFY, Naganna N, Sintim HO. Nicotinamide–Ponatinib Analogues as Potent Anti-CML and Anti-AML Compounds. ACS Omega. 2020 Feb 18;5(6):2690–8.
  • 34. Miyamoto N, Sakai N, Hirayama T, Miwa K, Oguro Y, Oki H, et al. Discovery of N -[5-({2-[(cyclopropylcarbonyl)amino]imidazo[1,2- b ]pyridazin-6-yl}oxy)-2-methylphenyl]-1,3-dimethyl-1 H -pyrazole-5-carboxamide (TAK-593), a highly potent VEGFR2 kinase inhibitor. Bioorg Med Chem. 2013 Apr;21(8):2333–45.
  • 35. Shen Y-M, Lv P-C, Chen W, Liu P-G, Zhang M-Z, Zhu H-L. Synthesis and antiproliferative activity of indolizine derivatives incorporating a cyclopropylcarbonyl group against Hep-G2 cancer cell line. Eur J Med Chem. 2010 Jul;45(7):3184–90.
  • 36. Chidella K, Seelam N, Cherukumalli PKR, Reddy N J, Sridhar G. Design and synthesis of novel 1,2,4-Thiadiazole linked imidazo[1,2-b]pyridazine as anticancer agents. Chem Data Collect. 2020 Dec;30:100554.
  • 37. Tewari N, Mohammad K, Rai B, Prakash H, Hussain M. Processes for the preparation of cefozopran, its salts and polymorphic forms thereof [Internet]. WO2010/89729. p. 57.
  • 38. Jankowska A, Świerczek A, Wyska E, Gawalska A, Bucki A, Pawłowski M, et al. Advances in Discovery of PDE10A Inhibitors for CNS-Related Disorders. Part 1: Overview of the Chemical and Biological Research. Curr Drug Targets. 2018 Nov 27;20(1):122–43.
  • 39. Juillet C, Ermolenko L, Boyarskaya D, Baratte B, Josselin B, Nedev H, et al. From Synthetic Simplified Marine Metabolite Analogues to New Selective Allosteric Inhibitor of Aurora B Kinase. J Med Chem. 2021 Jan 28;64(2):1197–219.
  • 40. Shannan B, Watters A, Chen Q, Mollin S, Dörr M, Meggers E, et al. PIM kinases as therapeutic targets against advanced melanoma. Oncotarget. 2016 Aug 23;7(34):54897–912.
  • 41. Foulks JM, Carpenter KJ, Luo B, Xu Y, Senina A, Nix R, et al. A Small-Molecule Inhibitor of PIM Kinases as a Potential Treatment for Urothelial Carcinomas. Neoplasia. 2014 May;16(5):403–12.
  • 42. Moslin R, Zhang Y, Wrobleski ST, Lin S, Mertzman M, Spergel S, et al. Identification of N -Methyl Nicotinamide and N -Methyl Pyridazine-3-Carboxamide Pseudokinase Domain Ligands as Highly Selective Allosteric Inhibitors of Tyrosine Kinase 2 (TYK2). J Med Chem. 2019 Oct 24;62(20):8953–72.
  • 43. Moslin R, Gardner D, Santella J, Zhang Y, Duncia JV, Liu C, et al. Identification of imidazo[1,2- b ]pyridazine TYK2 pseudokinase ligands as potent and selective allosteric inhibitors of TYK2 signalling. MedChemComm. 2017;8(4):700–12.
  • 44. Yeh V, Judd AS, Souers AJ. Chapter 11 Lipid-Metabolizing Enzymes as Targets for Dyslipidemia and Insulin Resistance. In: Annual Reports in Medicinal Chemistry [Internet]. Elsevier; 2007 [cited 2021 Jun 22]. p. 161–75. ISBN: 978-0-12-373912-4.
  • 45. He Y, Wu JB, Lei F, Chen P, Hai L, Wu Y. Design, synthesis and antibacterial activity of novel 1-oxacephem analogs. Chin Chem Lett. 2012 Apr;23(4):407–10.
  • 46. Özbek O, Gürdere MB. A review on the synthesis and applications of molecules as anticonvulsant drug agent candidates. Med Chem Res. 2020 Sep;29(9):1553–78.
  • 47. Özbek O, Gürdere MB. Synthesis and anticancer properties of 2-aminothiazole derivatives. Phosphorus Sulfur Silicon Relat Elem. 2021 May 4;196(5):444–54.
  • 48. Kobe J, Stanovnik B, Tišler T. Synthesis of pyridazine derivatives—XV. Tetrahedron. 1968 Jan;24(1):239–45.
  • 49. Heinisch G, Lötsch G, Offenberger S, Stanovnik B, Tisler M. Preparation of azolopyridazinecarboxylic acids. J Heterocycl Chem. 1989;26(6):1751–4.
  • 50. Ishikawa T, Iizawa Y, Okonogi K, Miyake A. Studies on Anti-MRSA Parenteral Cephalosporins. I. Synthesis and Antibacterial Activity of 7.BETA.-[2-(5-Amino-1,2,4-thiadiazol-3-yl)-2(Z)-hydroxyiminoacetamido]-3-(substituted imidazo [1,2-b]-pyridazinium-1-yl)methyl-3-cephem-4-carboxylates and Related Compounds. J Antibiot (Tokyo). 2000;53(10):1053–70.
  • 51. Matsumoto S, Miyamoto N, Hirayama T, Oki H, Okada K, Tawada M, et al. Structure-based design, synthesis, and evaluation of imidazo[1,2-b]pyridazine and imidazo[1,2-a]pyridine derivatives as novel dual c-Met and VEGFR2 kinase inhibitors. Bioorg Med Chem. 2013 Dec;21(24):7686–98.
  • 52. Hou Z, Xu H. Electrophotocatalytic C−H Azolation of Arenes. ChemElectroChem. 2021 May 3;8(9):1571–3.
  • 53. Xu P, Chen P, Xu H. Scalable Photoelectrochemical Dehydrogenative Cross‐Coupling of Heteroarenes with Aliphatic C−H Bonds. Angew Chem. 2020 Aug 17;132(34):14381–6.
  • 54. Huang H, Li H, Cordier M, Soulé J, Doucet H. Pd‐Catalyzed Direct Arylations of Heteroarenes with Polyfluoroalkoxy‐Substituted Bromobenzenes. Eur J Org Chem. 2020 Oct 15;2020(38):6094–101.
  • 55. Mao S, Li H, Shi X, Soulé J, Doucet H. Environmentally Benign Arylations of 5‐Membered Ring Heteroarenes by Pd‐Catalyzed C−H Bonds Activations. ChemCatChem. 2019 Jan 9;11(1):269–86.
  • 56. Bouzayani B, Ben Salem R, Soulé J-F, Doucet H. Synthesis of C9,C10-Diheteroarylated Phenanthrenes via Palladium-Catalyzed C-H Bond Activation: Synthesis of C9,C10-Diheteroarylated Phenanthrenes via Palladium-Catalyzed C-H Bond Activation. Eur J Org Chem. 2018 Dec 2;2018(44):6092–100.
  • 57. Mao S, Shi X, Soulé J-F, Doucet H. Exploring Green Solvents Associated to Pd/C as Heterogeneous Catalyst for Direct Arylation of Heteroaromatics with Aryl Bromides. Adv Synth Catal. 2018 Sep 3;360(17):3306–17.
  • 58. Chikhi S, Djebbar S, Soulé J-F, Doucet H. Environmentally-Safe Conditions for a Palladium-Catalyzed Direct C3-Arylation with High Turn Over Frequency of Imidazo[1,2- b ]pyridazines Using Aryl Bromides and Chlorides. Chem - Asian J. 2016 Sep 6;11(17):2443–52.
  • 59. Bellina F, Rossi R. Recent advances in the synthesis of (hetero)aryl-substituted heteroarenes via transition metal-catalysed direct (hetero)arylation of heteroarene C–H bonds with aryl halides or pseudohalides, diaryliodonium salts, and potassium aryltrifluoroborates. Tetrahedron. 2009 Dec;65(50):10269–310.
  • 60. Gu Y, Shen Y, Zarate C, Martin R. A Mild and Direct Site-Selective sp 2 C–H Silylation of (Poly)Azines. J Am Chem Soc. 2019 Jan 9;141(1):127–32.
  • 61. Handa S, Jin B, Bora PP, Wang Y, Zhang X, Gallou F, et al. Sonogashira Couplings Catalyzed by Fe Nanoparticles Containing ppm Levels of Reusable Pd, under Mild Aqueous Micellar Conditions. ACS Catal. 2019 Mar;9(3):2423–31.
  • 62. Saikia I, Borah AJ, Phukan P. Use of Bromine and Bromo-Organic Compounds in Organic Synthesis. Chem Rev. 2016 Jun 22;116(12):6837–7042.
  • 63. Tagore SS, Swaminathan J, Manikandan D, Gomathi S, Nirmal Ram S, Ramalingam M, et al. Molecular, vibrational (FT-IR and FT-Raman), NMR and UV spectral analysis of imidazo[1,2-b]pyridazine using experimental and DFT calculations. Chem Phys Lett. 2020 Jan;739:136943.
  • 64. Miyashita M, Akamatsu M, Ueno H, Nakagawa Y, Nishimura K, Hayashi Y, et al. Structure-Activity Relationships of RGD Mimetics as Fibrinogen-Receptor Antagonists. Biosci Biotechnol Biochem. 1999 Jan;63(10):1684–90.
  • 65. Pugmire RJ, Smith JC, Grant DM, Stanovnik B, Tišler M, Verček B. Correlation of ring nitrogen substituents with carbon-13 nuclear magnetic resonance data in azoloazines. J Heterocycl Chem. 1987 May;24(3):805–9.
  • 66. Downing JW, Waluk JW, Stanovnik B, Michl J. Applications of magnetic circular dichroism: a Hammett-like equation for structural work. Determination of protonation sites in azaindolizines. J Org Chem. 1985;50(3):302–11.
  • 67. Stefaniak L, Roberts JD, Witanowski M, Hamdi BT, Webb GA. A15N NMR investigation of some azolopyridines. Org Magn Reson. 1984 Apr;22(4):209–14.
  • 68. Kovać B, Klasinc L, Stanovnik B, Tišler M. Photoelectron spectroscopy of heterocycles. Azaindenes and azaindolizines. J Heterocycl Chem. 1980 Jun;17(4):689–94.

On the Biological Importance, Preparation, and Uses of Imidazo[1,2-b]pyridazine-Based Compounds

Yıl 2021, Cilt: 8 Sayı: 4, 1217 - 1250, 30.11.2021
https://doi.org/10.18596/jotcsa.1000771

Öz

While studying several pyridazine compounds, the author discovered imidazo[1,2-b]pyridazine (IMP), which is a very versatile compound class. It has been an inhibitor for many enzymes and also it is used as a brominating reagent in organic syntheses. Owing to its high biological activity, researchers have always considered including this molecule in their final structures. This humble attempt just aims to introduce this very powerful molecule to the readers, primarily of chemical origin, and should not be considered as a full treatise of, especially, the medicinal chemistry of the molecule. This work discusses the inhibitory effects, organic chemistry, applications in material chemistry, and theoretical studies of IMP and related molecules. The readers are hereby encouraged to work with medicinal chemists with the newly prepared molecules including this and similar molecules, in the struggle with many diseases like cancer, Alzheimer’s, and others.

Kaynakça

  • 1. Stanovnik B, Tišler M. Synthesis of pyridazine derivatives—VIII. Tetrahedron. 1967 Jan;23(1):387–95.
  • 2. Liu J, Zhang Y, Huang H, Lei X, Tang G, Cao X, et al. Recent advances in Bcr‐Abl tyrosine kinase inhibitors for overriding T315I mutation. Chem Biol Drug Des. 2021 Mar;97(3):649–64.
  • 3. AbdelHaleem A, Mansour AO, AbdelKader M, Arafa RK. Selective VEGFR-2 inhibitors: Synthesis of pyridine derivatives, cytotoxicity and apoptosis induction profiling. Bioorganic Chem. 2020 Oct;103:104222.
  • 4. Pandit SS, Kulkarni MR, Ghosh U, Pandit YB, Lad NP. Synthesis and biological evaluation of imidazo[1,2-b]pyridazines as inhibitors of TNF- α production. Mol Divers. 2018 Aug;22(3):545–60.
  • 5. Shi Q, Tebben A, Dyckman AJ, Li H, Liu C, Lin J, et al. Purine derivatives as potent Bruton’s tyrosine kinase (BTK) inhibitors for autoimmune diseases. Bioorg Med Chem Lett. 2014 May;24(9):2206–11.
  • 6. Abdel‐Maksoud MS, El‐Gamal MI, Benhalilou DR, Ashraf S, Mohammed SA, Oh C. Mechanistic/mammalian target of rapamycin: Recent pathological aspects and inhibitors. Med Res Rev. 2019 Mar;39(2):631–64.
  • 7. Amin HS, Parikh PK, Ghate MD. Medicinal chemistry strategies for the development of phosphodiesterase 10A (PDE10A) inhibitors - An update of recent progress. Eur J Med Chem. 2021 Mar;214:113155.
  • 8. Sato T, Sekimata K, Sakai N, Watanabe H, Mishima-Tsumagari C, Taguri T, et al. Structural Basis of Activin Receptor-Like Kinase 2 (R206H) Inhibition by Bis-heteroaryl Pyrazole-Based Inhibitors for the Treatment of Fibrodysplasia Ossificans Progressiva Identified by the Integration of Ligand-Based and Structure-Based Drug Design Approaches. ACS Omega. 2020 May 26;5(20):11411–23.
  • 9. Alnabulsi S, Al-Hurani EA. Pim kinase inhibitors in cancer: medicinal chemistry insights into their activity and selectivity. Drug Discov Today. 2020 Nov;25(11):2062–9.
  • 10. Farag AK, Roh EJ. Death-associated protein kinase (DAPK) family modulators: Current and future therapeutic outcomes. Med Res Rev. 2019 Jan;39(1):349–85.
  • 11. Pandey MK, DeGrado TR. Glycogen Synthase Kinase-3 (GSK-3)-Targeted Therapy and Imaging. Theranostics. 2016;6(4):571–93.
  • 12. Wei P, Liu B, Wang R, Gao Y, Li L, Ma Y, et al. Discovery of a series of dimethoxybenzene FGFR inhibitors with 5H-pyrrolo[2,3-b]pyrazine scaffold: structure–activity relationship, crystal structural characterization and in vivo study. Acta Pharm Sin B. 2019 Mar;9(2):351–68.
  • 13. Ahammad F, Tengku Abd Rashid TR, Mohamed M, Tanbin S, Ahmad Fuad FA. Contemporary Strategies and Current Trends in Designing Antiviral Drugs against Dengue Fever via Targeting Host-Based Approaches. Microorganisms. 2019 Aug 28;7(9):296.
  • 14. Moine E, Moiré N, Dimier-Poisson I, Brunet K, Couet W, Colas C, et al. Imidazo[1,2-b]pyridazines targeting Toxoplasma gondii calcium-dependent protein kinase 1 decrease the parasite burden in mice with acute toxoplasmosis. Int J Parasitol. 2018 Jun;48(7):561–8.
  • 15. He Z-X, Gong Y-P, Zhang X, Ma L-Y, Zhao W. Pyridazine as a privileged structure: An updated review on anticancer activity of pyridazine containing bioactive molecules. Eur J Med Chem. 2021 Jan;209:112946.
  • 16. Werbel LM, Worth DF. Chapter 13. Antiparasitic Agents. In: Annual Reports in Medicinal Chemistry [Internet]. Elsevier; 1980 [cited 2021 Jun 22]. p. 120–9. ISBN: 978-0-12-040515-2.
  • 17. Sruthi K, Sumakanth M, Mahendra KC, Naresh K. Synthesis, in silico and in vitro anti-proliferative studies of some novel benzamido substituted imidazo[1,2-b]pyridazin-2-ones. Ank Üniversitesi Eczacı Fakültesi Derg. 2017;41(1):9–25.
  • 18. Schirrmacher R, Bailey JJ, Mossine AV, Scott PJH, Kaiser L, Bartenstein P, et al. Radioligands for Tropomyosin Receptor Kinase (Trk) Positron Emission Tomography Imaging. Pharmaceuticals. 2019 Jan 3;12(1):7.
  • 19. Margrey KA, McManus JB, Bonazzi S, Zecri F, Nicewicz DA. Predictive Model for Site-Selective Aryl and Heteroaryl C–H Functionalization via Organic Photoredox Catalysis. J Am Chem Soc. 2017 Aug 16;139(32):11288–99.
  • 20. Chen S, Liu L, Gao X, Hua Y, Peng L, Zhang Y, et al. Addition of alkynes and osmium carbynes towards functionalized dπ–pπ conjugated systems. Nat Commun. 2020 Dec;11(1):4651.
  • 21. Liu S, Pan P, Fan H, Li H, Wang W, Zhang Y. Photocatalytic C–H silylation of heteroarenes by using trialkylhydrosilanes. Chem Sci. 2019;10(13):3817–25.
  • 22. Yan H, Hou Z, Xu H. Photoelectrochemical C−H Alkylation of Heteroarenes with Organotrifluoroborates. Angew Chem Int Ed. 2019 Mar 26;58(14):4592–5.
  • 23. Hu X, Zhang G, Bu F, Luo X, Yi K, Zhang H, et al. Photoinduced oxidative activation of electron-rich arenes: alkenylation with H2 evolution under external oxidant-free conditions. Chem Sci. 2018;9(6):1521–6.
  • 24. Štefane B, Polanc S. CAN-Mediated Oxidation of Electron-Deficient Aryl and Heteroaryl Hydrazines and Hydrazides. Synlett. 2008 May;2008(9):1279–82.
  • 25. Stanovnik B, Tisler M, Drnovsek I. 3-bromoimidazo (1,2-b)pyridazine-bromine and 3-bromo-6-chloroimidazo (1,2-b) pyridazine-bromine complexes; new brominating agents for organic compounds. Synthesis. 1981;(12):987–9.
  • 26. Song W, Xu Q, Zhu J, Chen Y, Mu H, Huang J, et al. Imidazo[1,2- b ]pyridazine as Building Blocks for Host Materials for High-Performance Red-Phosphorescent Organic Light-Emitting Devices. ACS Appl Mater Interfaces. 2020 Apr 29;12(17):19701–9.
  • 27. Lin S, Hao P, Shen J, Fu Y. Hierarchically responsive and photochromic imidazopyridazinium iodoargentate hybrid materials. Dyes Pigments. 2018 Dec;159:457–63.
  • 28. Ma Y, Liang J, Zhao D, Chen Y-L, Shen J, Xiong B. Condensed Fukui function predicts innate C–H radical functionalization sites on multi-nitrogen containing fused arenes. RSC Adv. 2014;4(33):17262–4.
  • 29. Roskoski R. Properties of FDA-approved small molecule protein kinase inhibitors. Pharmacol Res. 2019 Jun;144:19–50.
  • 30. Hu L, Cao T, Lv Y, Ding Y, Yang L, Zhang Q, et al. Design, synthesis, and biological activity of 4-(imidazo[1,2- b ]pyridazin-3-yl)-1 H -pyrazol-1-yl-phenylbenzamide derivatives as BCR–ABL kinase inhibitors. Bioorg Med Chem Lett. 2016 Dec;26(23):5830–5.
  • 31. Lambert GK, Duhme-Klair A-K, Morgan T, Ramjee MK. The background, discovery and clinical development of BCR-ABL inhibitors. Drug Discov Today. 2013 Oct;18(19–20):992–1000.
  • 32. Lee HJ, Pham PC, Hyun SY, Baek B, Kim B, Kim Y, et al. Development of a 4-aminopyrazolo[3,4-d]pyrimidine-based dual IGF1R/Src inhibitor as a novel anticancer agent with minimal toxicity. Mol Cancer. 2018 Dec;17(1):50.
  • 33. Larocque E, Chu EFY, Naganna N, Sintim HO. Nicotinamide–Ponatinib Analogues as Potent Anti-CML and Anti-AML Compounds. ACS Omega. 2020 Feb 18;5(6):2690–8.
  • 34. Miyamoto N, Sakai N, Hirayama T, Miwa K, Oguro Y, Oki H, et al. Discovery of N -[5-({2-[(cyclopropylcarbonyl)amino]imidazo[1,2- b ]pyridazin-6-yl}oxy)-2-methylphenyl]-1,3-dimethyl-1 H -pyrazole-5-carboxamide (TAK-593), a highly potent VEGFR2 kinase inhibitor. Bioorg Med Chem. 2013 Apr;21(8):2333–45.
  • 35. Shen Y-M, Lv P-C, Chen W, Liu P-G, Zhang M-Z, Zhu H-L. Synthesis and antiproliferative activity of indolizine derivatives incorporating a cyclopropylcarbonyl group against Hep-G2 cancer cell line. Eur J Med Chem. 2010 Jul;45(7):3184–90.
  • 36. Chidella K, Seelam N, Cherukumalli PKR, Reddy N J, Sridhar G. Design and synthesis of novel 1,2,4-Thiadiazole linked imidazo[1,2-b]pyridazine as anticancer agents. Chem Data Collect. 2020 Dec;30:100554.
  • 37. Tewari N, Mohammad K, Rai B, Prakash H, Hussain M. Processes for the preparation of cefozopran, its salts and polymorphic forms thereof [Internet]. WO2010/89729. p. 57.
  • 38. Jankowska A, Świerczek A, Wyska E, Gawalska A, Bucki A, Pawłowski M, et al. Advances in Discovery of PDE10A Inhibitors for CNS-Related Disorders. Part 1: Overview of the Chemical and Biological Research. Curr Drug Targets. 2018 Nov 27;20(1):122–43.
  • 39. Juillet C, Ermolenko L, Boyarskaya D, Baratte B, Josselin B, Nedev H, et al. From Synthetic Simplified Marine Metabolite Analogues to New Selective Allosteric Inhibitor of Aurora B Kinase. J Med Chem. 2021 Jan 28;64(2):1197–219.
  • 40. Shannan B, Watters A, Chen Q, Mollin S, Dörr M, Meggers E, et al. PIM kinases as therapeutic targets against advanced melanoma. Oncotarget. 2016 Aug 23;7(34):54897–912.
  • 41. Foulks JM, Carpenter KJ, Luo B, Xu Y, Senina A, Nix R, et al. A Small-Molecule Inhibitor of PIM Kinases as a Potential Treatment for Urothelial Carcinomas. Neoplasia. 2014 May;16(5):403–12.
  • 42. Moslin R, Zhang Y, Wrobleski ST, Lin S, Mertzman M, Spergel S, et al. Identification of N -Methyl Nicotinamide and N -Methyl Pyridazine-3-Carboxamide Pseudokinase Domain Ligands as Highly Selective Allosteric Inhibitors of Tyrosine Kinase 2 (TYK2). J Med Chem. 2019 Oct 24;62(20):8953–72.
  • 43. Moslin R, Gardner D, Santella J, Zhang Y, Duncia JV, Liu C, et al. Identification of imidazo[1,2- b ]pyridazine TYK2 pseudokinase ligands as potent and selective allosteric inhibitors of TYK2 signalling. MedChemComm. 2017;8(4):700–12.
  • 44. Yeh V, Judd AS, Souers AJ. Chapter 11 Lipid-Metabolizing Enzymes as Targets for Dyslipidemia and Insulin Resistance. In: Annual Reports in Medicinal Chemistry [Internet]. Elsevier; 2007 [cited 2021 Jun 22]. p. 161–75. ISBN: 978-0-12-373912-4.
  • 45. He Y, Wu JB, Lei F, Chen P, Hai L, Wu Y. Design, synthesis and antibacterial activity of novel 1-oxacephem analogs. Chin Chem Lett. 2012 Apr;23(4):407–10.
  • 46. Özbek O, Gürdere MB. A review on the synthesis and applications of molecules as anticonvulsant drug agent candidates. Med Chem Res. 2020 Sep;29(9):1553–78.
  • 47. Özbek O, Gürdere MB. Synthesis and anticancer properties of 2-aminothiazole derivatives. Phosphorus Sulfur Silicon Relat Elem. 2021 May 4;196(5):444–54.
  • 48. Kobe J, Stanovnik B, Tišler T. Synthesis of pyridazine derivatives—XV. Tetrahedron. 1968 Jan;24(1):239–45.
  • 49. Heinisch G, Lötsch G, Offenberger S, Stanovnik B, Tisler M. Preparation of azolopyridazinecarboxylic acids. J Heterocycl Chem. 1989;26(6):1751–4.
  • 50. Ishikawa T, Iizawa Y, Okonogi K, Miyake A. Studies on Anti-MRSA Parenteral Cephalosporins. I. Synthesis and Antibacterial Activity of 7.BETA.-[2-(5-Amino-1,2,4-thiadiazol-3-yl)-2(Z)-hydroxyiminoacetamido]-3-(substituted imidazo [1,2-b]-pyridazinium-1-yl)methyl-3-cephem-4-carboxylates and Related Compounds. J Antibiot (Tokyo). 2000;53(10):1053–70.
  • 51. Matsumoto S, Miyamoto N, Hirayama T, Oki H, Okada K, Tawada M, et al. Structure-based design, synthesis, and evaluation of imidazo[1,2-b]pyridazine and imidazo[1,2-a]pyridine derivatives as novel dual c-Met and VEGFR2 kinase inhibitors. Bioorg Med Chem. 2013 Dec;21(24):7686–98.
  • 52. Hou Z, Xu H. Electrophotocatalytic C−H Azolation of Arenes. ChemElectroChem. 2021 May 3;8(9):1571–3.
  • 53. Xu P, Chen P, Xu H. Scalable Photoelectrochemical Dehydrogenative Cross‐Coupling of Heteroarenes with Aliphatic C−H Bonds. Angew Chem. 2020 Aug 17;132(34):14381–6.
  • 54. Huang H, Li H, Cordier M, Soulé J, Doucet H. Pd‐Catalyzed Direct Arylations of Heteroarenes with Polyfluoroalkoxy‐Substituted Bromobenzenes. Eur J Org Chem. 2020 Oct 15;2020(38):6094–101.
  • 55. Mao S, Li H, Shi X, Soulé J, Doucet H. Environmentally Benign Arylations of 5‐Membered Ring Heteroarenes by Pd‐Catalyzed C−H Bonds Activations. ChemCatChem. 2019 Jan 9;11(1):269–86.
  • 56. Bouzayani B, Ben Salem R, Soulé J-F, Doucet H. Synthesis of C9,C10-Diheteroarylated Phenanthrenes via Palladium-Catalyzed C-H Bond Activation: Synthesis of C9,C10-Diheteroarylated Phenanthrenes via Palladium-Catalyzed C-H Bond Activation. Eur J Org Chem. 2018 Dec 2;2018(44):6092–100.
  • 57. Mao S, Shi X, Soulé J-F, Doucet H. Exploring Green Solvents Associated to Pd/C as Heterogeneous Catalyst for Direct Arylation of Heteroaromatics with Aryl Bromides. Adv Synth Catal. 2018 Sep 3;360(17):3306–17.
  • 58. Chikhi S, Djebbar S, Soulé J-F, Doucet H. Environmentally-Safe Conditions for a Palladium-Catalyzed Direct C3-Arylation with High Turn Over Frequency of Imidazo[1,2- b ]pyridazines Using Aryl Bromides and Chlorides. Chem - Asian J. 2016 Sep 6;11(17):2443–52.
  • 59. Bellina F, Rossi R. Recent advances in the synthesis of (hetero)aryl-substituted heteroarenes via transition metal-catalysed direct (hetero)arylation of heteroarene C–H bonds with aryl halides or pseudohalides, diaryliodonium salts, and potassium aryltrifluoroborates. Tetrahedron. 2009 Dec;65(50):10269–310.
  • 60. Gu Y, Shen Y, Zarate C, Martin R. A Mild and Direct Site-Selective sp 2 C–H Silylation of (Poly)Azines. J Am Chem Soc. 2019 Jan 9;141(1):127–32.
  • 61. Handa S, Jin B, Bora PP, Wang Y, Zhang X, Gallou F, et al. Sonogashira Couplings Catalyzed by Fe Nanoparticles Containing ppm Levels of Reusable Pd, under Mild Aqueous Micellar Conditions. ACS Catal. 2019 Mar;9(3):2423–31.
  • 62. Saikia I, Borah AJ, Phukan P. Use of Bromine and Bromo-Organic Compounds in Organic Synthesis. Chem Rev. 2016 Jun 22;116(12):6837–7042.
  • 63. Tagore SS, Swaminathan J, Manikandan D, Gomathi S, Nirmal Ram S, Ramalingam M, et al. Molecular, vibrational (FT-IR and FT-Raman), NMR and UV spectral analysis of imidazo[1,2-b]pyridazine using experimental and DFT calculations. Chem Phys Lett. 2020 Jan;739:136943.
  • 64. Miyashita M, Akamatsu M, Ueno H, Nakagawa Y, Nishimura K, Hayashi Y, et al. Structure-Activity Relationships of RGD Mimetics as Fibrinogen-Receptor Antagonists. Biosci Biotechnol Biochem. 1999 Jan;63(10):1684–90.
  • 65. Pugmire RJ, Smith JC, Grant DM, Stanovnik B, Tišler M, Verček B. Correlation of ring nitrogen substituents with carbon-13 nuclear magnetic resonance data in azoloazines. J Heterocycl Chem. 1987 May;24(3):805–9.
  • 66. Downing JW, Waluk JW, Stanovnik B, Michl J. Applications of magnetic circular dichroism: a Hammett-like equation for structural work. Determination of protonation sites in azaindolizines. J Org Chem. 1985;50(3):302–11.
  • 67. Stefaniak L, Roberts JD, Witanowski M, Hamdi BT, Webb GA. A15N NMR investigation of some azolopyridines. Org Magn Reson. 1984 Apr;22(4):209–14.
  • 68. Kovać B, Klasinc L, Stanovnik B, Tišler M. Photoelectron spectroscopy of heterocycles. Azaindenes and azaindolizines. J Heterocycl Chem. 1980 Jun;17(4):689–94.
Toplam 68 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Organik Kimya
Bölüm DERLEME MAKALELER
Yazarlar

Barbaros Akkurt 0000-0003-4066-3004

Yayımlanma Tarihi 30 Kasım 2021
Gönderilme Tarihi 25 Eylül 2021
Kabul Tarihi 6 Kasım 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 8 Sayı: 4

Kaynak Göster

Vancouver Akkurt B. On the Biological Importance, Preparation, and Uses of Imidazo[1,2-b]pyridazine-Based Compounds. JOTCSA. 2021;8(4):1217-50.