Araştırma Makalesi
BibTex RIS Kaynak Göster

Utilization of Kiwi Peel Lignocellulose as Fillers in Poly(Lactic Acid) Films

Yıl 2022, Cilt: 9 Sayı: 1, 283 - 294, 28.02.2022
https://doi.org/10.18596/jotcsa.1024326

Öz

Lignocellulosic structures extracted from agricultural wastes have great potential in re-designing sustainable packaging materials. In this study, the utilization of kiwifruit peels (KFP) (unt) and lignocellulosic structures extracted from KFP, which were alkali-treated (al), acid-treated (ac), and acetylated (ace), in poly(lactic acid) (PLA) films were investigated. Untreated and treated lignocellulosic structures were added to PLA film-forming solutions at 5% (w/w based on PLA). The film samples were characterized by their mechanical, water vapor permeability (WVP), FTIR, and optical properties. FTIR results presented that the acid treatment and acetylation have changed the chemical structure of KPF, which resulted in changes in intensities and peak shifts between 1400-1900 cm-1. WVP of the films containing KPF-based lignocellulosic structures was lower than control PLA films (p<0.05). The addition of KPF-based lignocellulosic structures increased the tensile strength and elastic modulus (p>0.05) compared to PLA control films. Films including acid-treated lignocellulosic structures had high opacity and relatively low lightness values (p<0.05). These results showed that adding lignocellulosic structures into PLA films is a promising method to improve the film properties.

Teşekkür

This study was conducted at Suleyman Demirel University Food Engineering Department Laboratories. Special thanks to Oguz Sogut for lignin characterization.

Kaynakça

  • 1. Dragone G, Kerssemakers AAJ, Driessen JLSP, Yamakawa CK, Brumano LP, Mussatto SI. Innovation and strategic orientations for the development of advanced biorefineries. Bioresource Technology. 2020 Apr;302:122847.
  • 2. Ubando AT, Felix CB, Chen W-H. Biorefineries in circular bioeconomy: A comprehensive review. Bioresource Technology. 2020 Mar;299:122585.
  • 3. Gullón B, Gullón P, Eibes G, Cara C, De Torres A, López-Linares JC, et al. Valorisation of olive agro-industrial by-products as a source of bioactive compounds. Science of The Total Environment. 2018 Dec;645:533–42.
  • 4. de Hoyos-Martínez PL, Erdocia X, Charrier-El Bouhtoury F, Prado R, Labidi J. Multistage treatment of almonds waste biomass: Characterization and assessment of the potential applications of raw material and products. Waste Management. 2018 Oct;80:40–50.
  • 5. Terzioğlu P, Güney F, Parın FN, Şen İ, Tuna S. Biowaste orange peel incorporated chitosan/polyvinyl alcohol composite films for food packaging applications. Food Packaging and Shelf Life. 2021 Dec;30:100742.
  • 6. Liu C, Hu J, Zhang H, Xiao R. Thermal conversion of lignin to phenols: Relevance between chemical structure and pyrolysis behaviors. Fuel. 2016 Oct;182:864–70.
  • 7. Morales A, Gullón B, Dávila I, Eibes G, Labidi J, Gullón P. Optimization of alkaline pretreatment for the co-production of biopolymer lignin and bioethanol from chestnut shells following a biorefinery approach. Industrial Crops and Products. 2018 Nov;124:582–92.
  • 8. Terzioğlu P, Parın FN, Sıcak Y. Lignin Composites for Biomedical Applications: Status, Challenges and Perspectives. In: Sharma S, Kumar A, editors. Lignin [Internet]. Cham: Springer International Publishing; 2020 [cited 2022 Feb 5]. p. 253–73. (Springer Series on Polymer and Composite Materials). ISBN: 978-3-030-40663-9.
  • 9. Laurichesse S, Avérous L. Chemical modification of lignins: Towards biobased polymers. Progress in Polymer Science. 2014 Jul;39(7):1266–90.
  • 10. Dávila I, Gullón B, Labidi J, Gullón P. Multiproduct biorefinery from vine shoots: Bio-ethanol and lignin production. Renewable Energy. 2019 Nov;142:612–23.
  • 11. Kumar P, Barrett DM, Delwiche MJ, Stroeve P. Methods for Pretreatment of Lignocellulosic Biomass for Efficient Hydrolysis and Biofuel Production. Ind Eng Chem Res. 2009 Apr 15;48(8):3713–29.
  • 12. Kothari R, Singh DP, Tyagi VV, Tyagi SK. Fermentative hydrogen production–An alternative clean energy source. Renewable and Sustainable Energy Reviews. 2012 May;16(4):2337–46.
  • 13. Guo F, Fang Z, Xu CC, Smith RL. Solid acid mediated hydrolysis of biomass for producing biofuels. Progress in Energy and Combustion Science. 2012 Oct;38(5):672–90.
  • 14. Quéméneur M, Hamelin J, Barakat A, Steyer J-P, Carrère H, Trably E. Inhibition of fermentative hydrogen production by lignocellulose-derived compounds in mixed cultures. International Journal of Hydrogen Energy. 2012 Feb;37(4):3150–9.
  • 15. Wulf C, Kaltschmitt M. Life cycle assessment of biohydrogen production as a transportation fuel in Germany. Bioresource Technology. 2013 Dec;150:466–75.
  • 16. Cheng Y-S, Zheng Y, Yu CW, Dooley TM, Jenkins BM, VanderGheynst JS. Evaluation of High Solids Alkaline Pretreatment of Rice Straw. Appl Biochem Biotechnol. 2010 Nov;162(6):1768–84.
  • 17. Zhang J, Ma X, Yu J, Zhang X, Tan T. The effects of four different pretreatments on enzymatic hydrolysis of sweet sorghum bagasse. Bioresource Technology. 2011 Mar;102(6):4585–9.
  • 18. Kim JS, Lee YY, Kim TH. A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresource Technology. 2016 Jan;199:42–8.
  • 19. Dávila I, Gordobil O, Labidi J, Gullón P. Assessment of suitability of vine shoots for hemicellulosic oligosaccharides production through aqueous processing. Bioresource Technology. 2016 Jul;211:636–44.
  • 20. Morales A, Labidi J, Gullón P. Hydrothermal treatments of walnut shells: A potential pretreatment for subsequent product obtaining. Science of The Total Environment. 2021 Apr;764:142800.
  • 21. Silva NGS, Maia TF, Mulinari DR. Effect of Acetylation with Perchloric Acid as Catalyst in Sugarcane Bagasse Waste. Journal of Natural Fibers. 2021 Feb 9;1–15.
  • 22. Sun Y, Cheng J. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technology. 2002 May;83(1):1–11.
  • 23. Thakur VK, Thakur MK, Raghavan P, Kessler MR. Progress in Green Polymer Composites from Lignin for Multifunctional Applications: A Review. ACS Sustainable Chem Eng. 2014 May 5;2(5):1072–92.
  • 24. Spiridon I, Leluk K, Resmerita AM, Darie RN. Evaluation of PLA–lignin bioplastics properties before and after accelerated weathering. Composites Part B: Engineering. 2015 Feb;69:342–9.
  • 25. Klapiszewski Ł, Bula K, Sobczak M, Jesionowski T. Influence of Processing Conditions on the Thermal Stability and Mechanical Properties of PP/Silica-Lignin Composites. International Journal of Polymer Science. 2016;2016:1–9.
  • 26. Nair SS, Chen H, Peng Y, Huang Y, Yan N. Polylactic Acid Biocomposites Reinforced with Nanocellulose Fibrils with High Lignin Content for Improved Mechanical, Thermal, and Barrier Properties. ACS Sustainable Chem Eng. 2018 Aug 6;6(8):10058–68.
  • 27. Yang W, Fortunati E, Dominici F, Giovanale G, Mazzaglia A, Balestra GM, et al. Effect of cellulose and lignin on disintegration, antimicrobial and antioxidant properties of PLA active films. International Journal of Biological Macromolecules. 2016 Aug;89:360–8.
  • 28. Terzioğlu P, Parın FN. Polyvinyl alcohol-corn starch-lemon peel biocomposite films as potential food packaging. Celal Bayar University Journal of Science. 2020;16(4):373–8.
  • 29. Holmgren A, Brunow G, Henriksson G, Zhang L, Ralph J. Non-enzymatic reduction of quinone methides during oxidative coupling of monolignols: implications for the origin of benzyl structures in lignins. Org Biomol Chem. 2006;4(18):3456.
  • 30. Graupner N. Application of lignin as natural adhesion promoter in cotton fibre-reinforced poly(lactic acid) (PLA) composites. J Mater Sci. 2008 Aug;43(15):5222–9.
  • 31. Brodin M, Vallejos M, Opedal MT, Area MC, Chinga-Carrasco G. Lignocellulosics as sustainable resources for production of bioplastics–A review. Journal of Cleaner Production. 2017 Sep;162:646–64.
  • 32. Beltrán FR, Arrieta MP, Gaspar G, de la Orden MU, Martínez Urreaga J. Effect of Iignocellulosic Nanoparticles Extracted from Yerba Mate (Ilex paraguariensis) on the Structural, Thermal, Optical and Barrier Properties of Mechanically Recycled Poly(lactic acid). Polymers. 2020 Jul 29;12(8):1690.
  • 33. Beltrán FR, Gaspar G, Dadras Chomachayi M, Jalali-Arani A, Lozano-Pérez AA, Cenis JL, et al. Influence of addition of organic fillers on the properties of mechanically recycled PLA. Environ Sci Pollut Res. 2021 May;28(19):24291–304.
  • 34. Beltrán FR, Infante C, de la Orden MU, Martínez Urreaga J. Mechanical recycling of poly(lactic acid): Evaluation of a chain extender and a peroxide as additives for upgrading the recycled plastic. Journal of Cleaner Production. 2019 May;219:46–56.
  • 35. Beltrán FR, de la Orden MU, Martínez Urreaga J. Amino-Modified Halloysite Nanotubes to Reduce Polymer Degradation and Improve the Performance of Mechanically Recycled Poly(lactic acid). J Polym Environ. 2018 Oct;26(10):4046–55.
  • 36. Arrieta M, Samper M, Aldas M, López J. On the Use of PLA-PHB Blends for Sustainable Food Packaging Applications. Materials. 2017 Aug 29;10(9):1008.
  • 37. Faludi G, Dora G, Renner K, Móczó J, Pukánszky B. Biocomposite from polylactic acid and lignocellulosic fibers: Structure–property correlations. Carbohydrate Polymers. 2013 Feb;92(2):1767–75.
  • 38. Arrieta MP, Peponi L, López D, Fernández-García M. Recovery of yerba mate (Ilex paraguariensis) residue for the development of PLA-based bionanocomposite films. Industrial Crops and Products. 2018 Jan;111:317–28.
  • 39. Xie J, Hse C-Y, Shupe TF, Hu T. Physicochemical characterization of lignin recovered from microwave-assisted delignified lignocellulosic biomass for use in biobased materials. J Appl Polym Sci. 2015 Oct 20;132(40):1-7.
  • 40. Mohammadalinejhad S, Almasi H, Esmaiili M. Physical and release properties of poly(lactic acid)/nanosilver-decorated cellulose, chitosan and lignocellulose nanofiber composite films. Materials Chemistry and Physics. 2021 Aug;268:124719.
  • 41. Latocha P. The Nutritional and Health Benefits of Kiwiberry (Actinidia arguta) – a Review. Plant Foods Hum Nutr. 2017 Dec;72(4):325–34.
  • 42. Richardson DP, Ansell J, Drummond LN. The nutritional and health attributes of kiwifruit: a review. Eur J Nutr. 2018 Dec;57(8):2659–76.
  • 43. Chamorro F, Carpena M, Nuñez-Estevez B, Prieto MA, Simal-Gandara J. Valorization of Kiwi by-Products for the Recovery of Bioactive Compounds: Circular Economy Model. Proceedings. 2020 Nov 9;70(1):9.
  • 44. Pinto D, Delerue-Matos C, Rodrigues F. Bioactivity, phytochemical profile and pro-healthy properties of Actinidia arguta: A review. Food Research International. 2020 Oct;136:109449.
  • 45. Almeida D, Pinto D, Santos J, Vinha AF, Palmeira J, Ferreira HN, et al. Hardy kiwifruit leaves (Actinidia arguta): An extraordinary source of value-added compounds for food industry. Food Chemistry. 2018 Sep;259:113–21.
  • 46. Sun Y, Yang L, Lu X, He C. Biodegradable and renewable poly(lactide)–lignin composites: synthesis, interface and toughening mechanism. J Mater Chem A. 2015;3(7):3699–709.
  • 47. Bax B, Müssig J. Impact and tensile properties of PLA/Cordenka and PLA/flax composites. Composites Science and Technology. 2008 Jun;68(7–8):1601–7.
  • 48. Bledzki AK, Jaszkiewicz A, Scherzer D. Mechanical properties of PLA composites with man-made cellulose and abaca fibres. Composites Part A: Applied Science and Manufacturing. 2009 Apr;40(4):404–12.
  • 49. Petinakis E, Yu L, Edward G, Dean K, Liu H, Scully AD. Effect of Matrix–Particle Interfacial Adhesion on the Mechanical Properties of Poly(lactic acid)/Wood-Flour Micro-Composites. J Polym Environ. 2009 Jun;17(2):83–94.
  • 50. Zhu C, Gong Q, Li J, Zhang Y, Yue J, Gao J. Research progresses of the comprehensive processing and utilization of kiwifruit. Storage and Process. 2013;13(1):57–62.
  • 51. Dias M, Caleja C, Pereira C, Calhelha RC, Kostic M, Sokovic M, et al. Chemical composition and bioactive properties of byproducts from two different kiwi varieties. Food Research International. 2020 Jan;127:108753.
  • 52. Wojdyło A, Nowicka P, Oszmiański J, Golis T. Phytochemical compounds and biological effects of Actinidia fruits. Journal of Functional Foods. 2017 Mar;30:194–202.
  • 53. Kocaman S, Ahmetli G. Effects of Various Methods of Chemical Modification of Lignocellulose Hazelnut Shell Waste on a Newly Synthesized Bio-based Epoxy Composite. J Polym Environ. 2020 Apr;28(4):1190–203.
  • 54. Sogut E, Cakmak H. Utilization of carrot (Daucus carota L.) fiber as a filler for chitosan based films. Food Hydrocolloids. 2020 Sep;106:105861.
  • 55. Anonymous. Standard Test Method for Tensile Properties of Thin Plastic Sheeting [Internet]. ASTM International; 2002.
  • 56. Anonymous. Standard test methods for water vapor transmission of materials: E96/E96M- 16. American Society for Testing and Materials Standard; 2016.
  • 57. Nam TH, Ogihara S, Tung NH, Kobayashi S. Effect of alkali treatment on interfacial and mechanical properties of coir fiber reinforced poly(butylene succinate) biodegradable composites. Composites Part B: Engineering. 2011 Sep;42(6):1648–56.
  • 58. Narendar R, Priya Dasan K. Chemical treatments of coir pith: Morphology, chemical composition, thermal and water retention behavior. Composites Part B: Engineering. 2014 Jan;56:770–9.
  • 59. Sreekala M, Kumaran M, Joseph S, Jacob M, Thomas S. Oil palm fibre reinforced phenol formaldehyde composites: influence of fibre surface modifications on the mechanical performance. Applied Composite Materials. 2000;7(5):295–329.
  • 60. Kocaman S. Preparation and characterization of natural waste reinforced epoxy resin matrix composites modified with different chemicals. Uluslararası Muhendislik Arastirma ve Gelistirme Dergisi. 2019 Jan 31;11(1):77–86.
  • 61. Khalil H, Tye Y, Saurabh C, Leh C, Lai T, Chong E, et al. Biodegradable polymer films from seaweed polysaccharides: A review on cellulose as a reinforcement material. Express Polymer Letters. 2017;11(4):244–65.
  • 62. Abdul Khalil HPS, Che Mohamad HCI, Khairunnisa AR, Owolabi FAT, Asniza M, Rizal S, et al. Development and characterization of bamboo fiber reinforced biopolymer films. Mater Res Express. 2018 Jul 24;5(8):085309.
  • 63. Valdés García A, Ramos Santonja M, Sanahuja AB, Selva M del CG. Characterization and degradation characteristics of poly(ε-caprolactone)-based composites reinforced with almond skin residues. Polymer Degradation and Stability. 2014 Oct;108:269–79.
  • 64. Kocaman S, Karaman M, Gursoy M, Ahmetli G. Chemical and plasma surface modification of lignocellulose coconut waste for the preparation of advanced biobased composite materials. Carbohydrate Polymers. 2017 Mar;159:48–57.
  • 65. Wang N, Zhang C, Weng Y. Enhancing gas barrier performance of polylactic acid/lignin composite films through cooperative effect of compatibilization and nucleation. J Appl Polym Sci. 2021 Apr 15;138(15):50199.
  • 66. Kabir MM, Wang H, Lau KT, Cardona F. Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview. Composites Part B: Engineering. 2012 Oct;43(7):2883–92.
  • 67. Kim Y, Suhr J, Seo H-W, Sun H, Kim S, Park I-K, et al. All Biomass and UV Protective Composite Composed of Compatibilized Lignin and Poly (Lactic-acid). Sci Rep. 2017 Apr;7(1):43596.
  • 68. Wang N, Zhang C, Weng Y. Enhancing gas barrier performance of polylactic acid/lignin composite films through cooperative effect of compatibilization and nucleation. J Appl Polym Sci. 2021 Apr 15;138(15):50199.
  • 69. Muller J, Casado Quesada A, González-Martínez C, Chiralt A. Antimicrobial properties and release of cinnamaldehyde in bilayer films based on polylactic acid (PLA) and starch. European Polymer Journal. 2017 Nov;96:316–25.
  • 70. Iglesias Montes ML, Luzi F, Dominici F, Torre L, Cyras VP, Manfredi LB, et al. Design and Characterization of PLA Bilayer Films Containing Lignin and Cellulose Nanostructures in Combination With Umbelliferone as Active Ingredient. Front Chem. 2019 Mar 26;7:157.
Yıl 2022, Cilt: 9 Sayı: 1, 283 - 294, 28.02.2022
https://doi.org/10.18596/jotcsa.1024326

Öz

Kaynakça

  • 1. Dragone G, Kerssemakers AAJ, Driessen JLSP, Yamakawa CK, Brumano LP, Mussatto SI. Innovation and strategic orientations for the development of advanced biorefineries. Bioresource Technology. 2020 Apr;302:122847.
  • 2. Ubando AT, Felix CB, Chen W-H. Biorefineries in circular bioeconomy: A comprehensive review. Bioresource Technology. 2020 Mar;299:122585.
  • 3. Gullón B, Gullón P, Eibes G, Cara C, De Torres A, López-Linares JC, et al. Valorisation of olive agro-industrial by-products as a source of bioactive compounds. Science of The Total Environment. 2018 Dec;645:533–42.
  • 4. de Hoyos-Martínez PL, Erdocia X, Charrier-El Bouhtoury F, Prado R, Labidi J. Multistage treatment of almonds waste biomass: Characterization and assessment of the potential applications of raw material and products. Waste Management. 2018 Oct;80:40–50.
  • 5. Terzioğlu P, Güney F, Parın FN, Şen İ, Tuna S. Biowaste orange peel incorporated chitosan/polyvinyl alcohol composite films for food packaging applications. Food Packaging and Shelf Life. 2021 Dec;30:100742.
  • 6. Liu C, Hu J, Zhang H, Xiao R. Thermal conversion of lignin to phenols: Relevance between chemical structure and pyrolysis behaviors. Fuel. 2016 Oct;182:864–70.
  • 7. Morales A, Gullón B, Dávila I, Eibes G, Labidi J, Gullón P. Optimization of alkaline pretreatment for the co-production of biopolymer lignin and bioethanol from chestnut shells following a biorefinery approach. Industrial Crops and Products. 2018 Nov;124:582–92.
  • 8. Terzioğlu P, Parın FN, Sıcak Y. Lignin Composites for Biomedical Applications: Status, Challenges and Perspectives. In: Sharma S, Kumar A, editors. Lignin [Internet]. Cham: Springer International Publishing; 2020 [cited 2022 Feb 5]. p. 253–73. (Springer Series on Polymer and Composite Materials). ISBN: 978-3-030-40663-9.
  • 9. Laurichesse S, Avérous L. Chemical modification of lignins: Towards biobased polymers. Progress in Polymer Science. 2014 Jul;39(7):1266–90.
  • 10. Dávila I, Gullón B, Labidi J, Gullón P. Multiproduct biorefinery from vine shoots: Bio-ethanol and lignin production. Renewable Energy. 2019 Nov;142:612–23.
  • 11. Kumar P, Barrett DM, Delwiche MJ, Stroeve P. Methods for Pretreatment of Lignocellulosic Biomass for Efficient Hydrolysis and Biofuel Production. Ind Eng Chem Res. 2009 Apr 15;48(8):3713–29.
  • 12. Kothari R, Singh DP, Tyagi VV, Tyagi SK. Fermentative hydrogen production–An alternative clean energy source. Renewable and Sustainable Energy Reviews. 2012 May;16(4):2337–46.
  • 13. Guo F, Fang Z, Xu CC, Smith RL. Solid acid mediated hydrolysis of biomass for producing biofuels. Progress in Energy and Combustion Science. 2012 Oct;38(5):672–90.
  • 14. Quéméneur M, Hamelin J, Barakat A, Steyer J-P, Carrère H, Trably E. Inhibition of fermentative hydrogen production by lignocellulose-derived compounds in mixed cultures. International Journal of Hydrogen Energy. 2012 Feb;37(4):3150–9.
  • 15. Wulf C, Kaltschmitt M. Life cycle assessment of biohydrogen production as a transportation fuel in Germany. Bioresource Technology. 2013 Dec;150:466–75.
  • 16. Cheng Y-S, Zheng Y, Yu CW, Dooley TM, Jenkins BM, VanderGheynst JS. Evaluation of High Solids Alkaline Pretreatment of Rice Straw. Appl Biochem Biotechnol. 2010 Nov;162(6):1768–84.
  • 17. Zhang J, Ma X, Yu J, Zhang X, Tan T. The effects of four different pretreatments on enzymatic hydrolysis of sweet sorghum bagasse. Bioresource Technology. 2011 Mar;102(6):4585–9.
  • 18. Kim JS, Lee YY, Kim TH. A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresource Technology. 2016 Jan;199:42–8.
  • 19. Dávila I, Gordobil O, Labidi J, Gullón P. Assessment of suitability of vine shoots for hemicellulosic oligosaccharides production through aqueous processing. Bioresource Technology. 2016 Jul;211:636–44.
  • 20. Morales A, Labidi J, Gullón P. Hydrothermal treatments of walnut shells: A potential pretreatment for subsequent product obtaining. Science of The Total Environment. 2021 Apr;764:142800.
  • 21. Silva NGS, Maia TF, Mulinari DR. Effect of Acetylation with Perchloric Acid as Catalyst in Sugarcane Bagasse Waste. Journal of Natural Fibers. 2021 Feb 9;1–15.
  • 22. Sun Y, Cheng J. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technology. 2002 May;83(1):1–11.
  • 23. Thakur VK, Thakur MK, Raghavan P, Kessler MR. Progress in Green Polymer Composites from Lignin for Multifunctional Applications: A Review. ACS Sustainable Chem Eng. 2014 May 5;2(5):1072–92.
  • 24. Spiridon I, Leluk K, Resmerita AM, Darie RN. Evaluation of PLA–lignin bioplastics properties before and after accelerated weathering. Composites Part B: Engineering. 2015 Feb;69:342–9.
  • 25. Klapiszewski Ł, Bula K, Sobczak M, Jesionowski T. Influence of Processing Conditions on the Thermal Stability and Mechanical Properties of PP/Silica-Lignin Composites. International Journal of Polymer Science. 2016;2016:1–9.
  • 26. Nair SS, Chen H, Peng Y, Huang Y, Yan N. Polylactic Acid Biocomposites Reinforced with Nanocellulose Fibrils with High Lignin Content for Improved Mechanical, Thermal, and Barrier Properties. ACS Sustainable Chem Eng. 2018 Aug 6;6(8):10058–68.
  • 27. Yang W, Fortunati E, Dominici F, Giovanale G, Mazzaglia A, Balestra GM, et al. Effect of cellulose and lignin on disintegration, antimicrobial and antioxidant properties of PLA active films. International Journal of Biological Macromolecules. 2016 Aug;89:360–8.
  • 28. Terzioğlu P, Parın FN. Polyvinyl alcohol-corn starch-lemon peel biocomposite films as potential food packaging. Celal Bayar University Journal of Science. 2020;16(4):373–8.
  • 29. Holmgren A, Brunow G, Henriksson G, Zhang L, Ralph J. Non-enzymatic reduction of quinone methides during oxidative coupling of monolignols: implications for the origin of benzyl structures in lignins. Org Biomol Chem. 2006;4(18):3456.
  • 30. Graupner N. Application of lignin as natural adhesion promoter in cotton fibre-reinforced poly(lactic acid) (PLA) composites. J Mater Sci. 2008 Aug;43(15):5222–9.
  • 31. Brodin M, Vallejos M, Opedal MT, Area MC, Chinga-Carrasco G. Lignocellulosics as sustainable resources for production of bioplastics–A review. Journal of Cleaner Production. 2017 Sep;162:646–64.
  • 32. Beltrán FR, Arrieta MP, Gaspar G, de la Orden MU, Martínez Urreaga J. Effect of Iignocellulosic Nanoparticles Extracted from Yerba Mate (Ilex paraguariensis) on the Structural, Thermal, Optical and Barrier Properties of Mechanically Recycled Poly(lactic acid). Polymers. 2020 Jul 29;12(8):1690.
  • 33. Beltrán FR, Gaspar G, Dadras Chomachayi M, Jalali-Arani A, Lozano-Pérez AA, Cenis JL, et al. Influence of addition of organic fillers on the properties of mechanically recycled PLA. Environ Sci Pollut Res. 2021 May;28(19):24291–304.
  • 34. Beltrán FR, Infante C, de la Orden MU, Martínez Urreaga J. Mechanical recycling of poly(lactic acid): Evaluation of a chain extender and a peroxide as additives for upgrading the recycled plastic. Journal of Cleaner Production. 2019 May;219:46–56.
  • 35. Beltrán FR, de la Orden MU, Martínez Urreaga J. Amino-Modified Halloysite Nanotubes to Reduce Polymer Degradation and Improve the Performance of Mechanically Recycled Poly(lactic acid). J Polym Environ. 2018 Oct;26(10):4046–55.
  • 36. Arrieta M, Samper M, Aldas M, López J. On the Use of PLA-PHB Blends for Sustainable Food Packaging Applications. Materials. 2017 Aug 29;10(9):1008.
  • 37. Faludi G, Dora G, Renner K, Móczó J, Pukánszky B. Biocomposite from polylactic acid and lignocellulosic fibers: Structure–property correlations. Carbohydrate Polymers. 2013 Feb;92(2):1767–75.
  • 38. Arrieta MP, Peponi L, López D, Fernández-García M. Recovery of yerba mate (Ilex paraguariensis) residue for the development of PLA-based bionanocomposite films. Industrial Crops and Products. 2018 Jan;111:317–28.
  • 39. Xie J, Hse C-Y, Shupe TF, Hu T. Physicochemical characterization of lignin recovered from microwave-assisted delignified lignocellulosic biomass for use in biobased materials. J Appl Polym Sci. 2015 Oct 20;132(40):1-7.
  • 40. Mohammadalinejhad S, Almasi H, Esmaiili M. Physical and release properties of poly(lactic acid)/nanosilver-decorated cellulose, chitosan and lignocellulose nanofiber composite films. Materials Chemistry and Physics. 2021 Aug;268:124719.
  • 41. Latocha P. The Nutritional and Health Benefits of Kiwiberry (Actinidia arguta) – a Review. Plant Foods Hum Nutr. 2017 Dec;72(4):325–34.
  • 42. Richardson DP, Ansell J, Drummond LN. The nutritional and health attributes of kiwifruit: a review. Eur J Nutr. 2018 Dec;57(8):2659–76.
  • 43. Chamorro F, Carpena M, Nuñez-Estevez B, Prieto MA, Simal-Gandara J. Valorization of Kiwi by-Products for the Recovery of Bioactive Compounds: Circular Economy Model. Proceedings. 2020 Nov 9;70(1):9.
  • 44. Pinto D, Delerue-Matos C, Rodrigues F. Bioactivity, phytochemical profile and pro-healthy properties of Actinidia arguta: A review. Food Research International. 2020 Oct;136:109449.
  • 45. Almeida D, Pinto D, Santos J, Vinha AF, Palmeira J, Ferreira HN, et al. Hardy kiwifruit leaves (Actinidia arguta): An extraordinary source of value-added compounds for food industry. Food Chemistry. 2018 Sep;259:113–21.
  • 46. Sun Y, Yang L, Lu X, He C. Biodegradable and renewable poly(lactide)–lignin composites: synthesis, interface and toughening mechanism. J Mater Chem A. 2015;3(7):3699–709.
  • 47. Bax B, Müssig J. Impact and tensile properties of PLA/Cordenka and PLA/flax composites. Composites Science and Technology. 2008 Jun;68(7–8):1601–7.
  • 48. Bledzki AK, Jaszkiewicz A, Scherzer D. Mechanical properties of PLA composites with man-made cellulose and abaca fibres. Composites Part A: Applied Science and Manufacturing. 2009 Apr;40(4):404–12.
  • 49. Petinakis E, Yu L, Edward G, Dean K, Liu H, Scully AD. Effect of Matrix–Particle Interfacial Adhesion on the Mechanical Properties of Poly(lactic acid)/Wood-Flour Micro-Composites. J Polym Environ. 2009 Jun;17(2):83–94.
  • 50. Zhu C, Gong Q, Li J, Zhang Y, Yue J, Gao J. Research progresses of the comprehensive processing and utilization of kiwifruit. Storage and Process. 2013;13(1):57–62.
  • 51. Dias M, Caleja C, Pereira C, Calhelha RC, Kostic M, Sokovic M, et al. Chemical composition and bioactive properties of byproducts from two different kiwi varieties. Food Research International. 2020 Jan;127:108753.
  • 52. Wojdyło A, Nowicka P, Oszmiański J, Golis T. Phytochemical compounds and biological effects of Actinidia fruits. Journal of Functional Foods. 2017 Mar;30:194–202.
  • 53. Kocaman S, Ahmetli G. Effects of Various Methods of Chemical Modification of Lignocellulose Hazelnut Shell Waste on a Newly Synthesized Bio-based Epoxy Composite. J Polym Environ. 2020 Apr;28(4):1190–203.
  • 54. Sogut E, Cakmak H. Utilization of carrot (Daucus carota L.) fiber as a filler for chitosan based films. Food Hydrocolloids. 2020 Sep;106:105861.
  • 55. Anonymous. Standard Test Method for Tensile Properties of Thin Plastic Sheeting [Internet]. ASTM International; 2002.
  • 56. Anonymous. Standard test methods for water vapor transmission of materials: E96/E96M- 16. American Society for Testing and Materials Standard; 2016.
  • 57. Nam TH, Ogihara S, Tung NH, Kobayashi S. Effect of alkali treatment on interfacial and mechanical properties of coir fiber reinforced poly(butylene succinate) biodegradable composites. Composites Part B: Engineering. 2011 Sep;42(6):1648–56.
  • 58. Narendar R, Priya Dasan K. Chemical treatments of coir pith: Morphology, chemical composition, thermal and water retention behavior. Composites Part B: Engineering. 2014 Jan;56:770–9.
  • 59. Sreekala M, Kumaran M, Joseph S, Jacob M, Thomas S. Oil palm fibre reinforced phenol formaldehyde composites: influence of fibre surface modifications on the mechanical performance. Applied Composite Materials. 2000;7(5):295–329.
  • 60. Kocaman S. Preparation and characterization of natural waste reinforced epoxy resin matrix composites modified with different chemicals. Uluslararası Muhendislik Arastirma ve Gelistirme Dergisi. 2019 Jan 31;11(1):77–86.
  • 61. Khalil H, Tye Y, Saurabh C, Leh C, Lai T, Chong E, et al. Biodegradable polymer films from seaweed polysaccharides: A review on cellulose as a reinforcement material. Express Polymer Letters. 2017;11(4):244–65.
  • 62. Abdul Khalil HPS, Che Mohamad HCI, Khairunnisa AR, Owolabi FAT, Asniza M, Rizal S, et al. Development and characterization of bamboo fiber reinforced biopolymer films. Mater Res Express. 2018 Jul 24;5(8):085309.
  • 63. Valdés García A, Ramos Santonja M, Sanahuja AB, Selva M del CG. Characterization and degradation characteristics of poly(ε-caprolactone)-based composites reinforced with almond skin residues. Polymer Degradation and Stability. 2014 Oct;108:269–79.
  • 64. Kocaman S, Karaman M, Gursoy M, Ahmetli G. Chemical and plasma surface modification of lignocellulose coconut waste for the preparation of advanced biobased composite materials. Carbohydrate Polymers. 2017 Mar;159:48–57.
  • 65. Wang N, Zhang C, Weng Y. Enhancing gas barrier performance of polylactic acid/lignin composite films through cooperative effect of compatibilization and nucleation. J Appl Polym Sci. 2021 Apr 15;138(15):50199.
  • 66. Kabir MM, Wang H, Lau KT, Cardona F. Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview. Composites Part B: Engineering. 2012 Oct;43(7):2883–92.
  • 67. Kim Y, Suhr J, Seo H-W, Sun H, Kim S, Park I-K, et al. All Biomass and UV Protective Composite Composed of Compatibilized Lignin and Poly (Lactic-acid). Sci Rep. 2017 Apr;7(1):43596.
  • 68. Wang N, Zhang C, Weng Y. Enhancing gas barrier performance of polylactic acid/lignin composite films through cooperative effect of compatibilization and nucleation. J Appl Polym Sci. 2021 Apr 15;138(15):50199.
  • 69. Muller J, Casado Quesada A, González-Martínez C, Chiralt A. Antimicrobial properties and release of cinnamaldehyde in bilayer films based on polylactic acid (PLA) and starch. European Polymer Journal. 2017 Nov;96:316–25.
  • 70. Iglesias Montes ML, Luzi F, Dominici F, Torre L, Cyras VP, Manfredi LB, et al. Design and Characterization of PLA Bilayer Films Containing Lignin and Cellulose Nanostructures in Combination With Umbelliferone as Active Ingredient. Front Chem. 2019 Mar 26;7:157.
Toplam 70 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Polimer Bilimi ve Teknolojileri
Bölüm Makaleler
Yazarlar

Ece Söğüt 0000-0003-4052-993X

Atıf Can Seydim 0000-0003-3808-509X

Yayımlanma Tarihi 28 Şubat 2022
Gönderilme Tarihi 16 Kasım 2021
Kabul Tarihi 3 Şubat 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 9 Sayı: 1

Kaynak Göster

Vancouver Söğüt E, Seydim AC. Utilization of Kiwi Peel Lignocellulose as Fillers in Poly(Lactic Acid) Films. JOTCSA. 2022;9(1):283-94.